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INTRODUCTION

In this paper we generalize some results of P6lya and Schoenberg on the
question of when polynomial interpolation schemes of the type studied by
G. D. Birkhoffyield unique solutions.

Necessary and sufficient conditions are given for the existence of nodes for
which the interpolation polynomials are unique. Then, those systems for
which unique interpolation exists for all nodes are characterized.

We conclude by showing some partial characterizations of polynomia
interpolation when the nodes are restricted to be real and then when their
order is required to remain fixed.

1. STATEMENT OF THE PROBLEM

The interpolation problem that we wish to consider in this paper was first
studied by G. D. Birkhoff [3] and can be stated as follows. Let there be given
positive integers k, n, and n-ordered pairs (i,j), where i, j are integers with
1,,;;; i,,;;; k, O,,;;;j,,;;; n - 1. Let Xl> X2' ••• , Xk be distinct complex numbers and for
each of the above (i,j), let y/ be a given complex number. Does there exist a
polynomial p(x) of degree less than n which satisfies, for each of these (i,j),
P(J)(Xi) = y/, and, if so, is this polynomial unique?

In this paper, we are only interested in the uniqueness question, and so we
can state our problem thus: Ifp(x) solves the interpolation problem when all
the numbers y/ are zero, isp(x) identically zero?

In [5], I. J. Schoenberg introduced the concept of an n-incidence matrix.
A matrix E is called an n-incidence matrix if

E --lleiJ.ll i.= 1, ..., k , h h' Old '"were eac eij IS or an L, eij = n.
) = 0, ..., n - 1 (i,j)

Thus, E has k rows and n columns, and has exactly n nonzero entries. Now our
problem can be restated as follows: given an n-incidence matrix with k rows,
and given k distinct points Xl> , •• , Xk and a polynomialp(x) in the class 7T,,_1
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of all polynomials of degree < n - l, which satisfies pU)(Xi) = 0 if eij = l, is
p(x) identically zero? Whether it is identically zero or not, we say that p(x)
interpolates the matrix E at the nodes Xl> ••• , Xk' We call n the order of the
interpolation problem.

For notational ease we make the following

DEFINITION 1.1. Two n-column matrices E and Eare said to be equivalent,
if they have the same number of nonzero rows, and the nonzero rows ofEare
a permutation of the nonzero rows of E.

The significance of such equivalence stems from the fact that zero rows in
an incidence matrix have no effect on the interpolation problem and, since any
ordering of the interpolating points is immaterial (except in Section 5), the
ordering of the rows of the matrix is incidental to the problem. Thus, the
matrices

100
o 1 0,
100

1 0 0
100
o 1 0

and

100
o 1 0
100
000

all define the same interpolation problem and are equivalent.
As an example of our problem, consider again the matrix

100
E= 0 1 O.

100

Here we are asked to find the polynomials of degree less than or equal to 2
which have zeroes at Xl and X3 and whose first derivatives vanish at X2' If X2 is
taken to be the midpoint between Xl and X3, then the polynomial p(x) =

(x - Xl) (X - X3) interpolates E at the nodes Xl> X2 and X3' However, if X2 is any
other point, the only interpolating polynomial is the zero polynomial. Thus,
the question of uniqueness sometimes depends on the choice of the nodes Xi'

DEFINITION 1.2. Given an n-incidence matrix E and distinct points Xl> ••• , Xk'

Eis said to be poised with respect to x" ... , X k if the only polynomial in '1Tn-1

which interpolates E at these points is the zero polynomial. E is said to be
conditionally poised if there are (distinct) points X I, ... , Xk with respect to which
E is poised. E is poised (or unconditionally poised) if it is poised with respect to
all choices of distinct points Xl' ••. , Xk'

In this and the following two sections, we shall characterize poised and
conditionally poised matrices.

Our first result deals with the possibility of reducing the order of a given
interpolation problem.
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Let £j and £2 be, respectively, nl- and nrincidence matrices. Ifn = nl + n2,
we define a class £j ffi E2 of n-incidence matrices as follows: E E E j ffi £2 if
the matrix £1 consisting ofthe first nj columns of£ and the matrix £2 consisting
of the last n - nj = n2 columns of E are equivalent to £j and E2, respectively.
For example, if

and

then the class E j ffi E2 consists of the matrices

11 0 0 0
01

I~I~ 0 0 0
I ° 1 0 0 111 IiI OilI ° 0 ~I ' 0 0 011'

0 1
0 I o '

10
III 0 0 Iii

10 0 0 0 0 1 0' II
0 0 1,1 "

and equivalent matrices.

THEOREM 1.1. Let £1> E2 be, respectively, nl- and n2-incidence matrices, and
let n = nl + n2' IfE E £1 ffi £2 is poised with respect to given points Xj, ..., x"
then E 1 and E2must both be poised with respect to the same points. Conversely,
if E I and £2 are poised with respect to Xl' ... , Xr , then every E E E1 ffi E2 is
poised with respect to XI' ... , xr•

Proof Suppose E is poised with respect to the points Xl' ... , Xr • Let p(x) E

'17n t-l be a polynomial which interpolates E j at the given points. Then
p(x) satisfies all the interpolation data of E up to the (nl - l)st column. But
p(nl)(x) == 0 and, hence, p(x) satisfies the interpolation data of E in columns
nl to n - 1. Thus,p(x) == 0, showing that E1 is poised with respect to Xl> •.• , Xr •

Now let q(x) E'17n2-1 be a polynomial which interpolates £2 at Xl> .•. , Xr •

Let ij(x) E'17n be a polynomial such that ij(1'l1)(x) == q(x). Since E j is poised for
the given points, there is a unique polynomial p(x) E '1T"I_1 satisfyingp(j)(x,) =

-ij(J)(xl ) for eli = 1 (EI = IlefJID. Now the polynomialp(x) +ij(x) interpolates
E at Xl> ... , Xr and, hence, is identically zero. Thus, q(x) = D(nl)(p(x) +ij(x» == 0
and E2 is poised with respect to Xl> .•. , X r •

Conversely, suppose that E j and E2 are poised with respect to the points
Xl> ••• , xr• Ifp(x) E '1Tn-j is a polynomial which interpolates E at these points,
then p(nl)(x) E '1Tn2 -1 interpolates E2 at the given points. Thus, p(nl)(x) == 0 and
p(x) is in '1Tnl -I' Butp(x) also interpolates E I at these points and, hence, must
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be identically zero. Therefore, E is poised with respect to the given points and
the theorem is demonstrated.

LEMMA 1.1. Let
E= \\eij\\~=0, , n-l

l= 1, , k

be a conditionally poised matrix. Then the set of vectors X = (XI' ..., Xk) for
which E is notpoised is a closed, nowhere dense set in complex k-space.

Proof E is poised with respect to given Xl> ••• , Xk if, and only if,

P( ) _ d ID(J) tl t = 0, ..., n - 1 °
Xl> ••• , Xk - et Xl eli = 1 =1= ,

where D(J) xl denotes thejth derivative of xt at x = Xl'
Now, the set of points X = (XI>X2'" .,Xk) for which P(XI, ..., xk) = °is

closed. Also, if this set contained an open sphere in complex k-space, then we
would have P(xj, X2, ..., xn) == 0, which is impossible since E is conditionally
poised. Thus, the set on which P(XI> ..., Xk) is zero must be nowhere dense.

Using this lemma and Theorem 1.1, we obtain the following

COROLLARY 1.1. E E E I EB E2is conditionally poised if, and only if, E I and E2
are conditionally poised.

Proof if E is conditionally poised, then by Theorem 1.1, so are E I and E2.
If E I and E2 are conditionally poised, then by Lemma 1.1 we can choose

Xl> ••• , Xk, with respect to which both E I and E2 are poised. Theorem 1.1 yields
then the fact that E is poised with respect to these points.

COROLLARY 1.2. E is poised if, and only if, E I and E2are poised.
We now proceed with our analysis of incidence matrices and related inter­

polation problems.

DEFINITION 1.3. Given an n-incidence matrix E, set mj = L~=I elj, j = 0,
1, ... , n - 1, and M p = L.~-o mj for p = 0, ..., n - 1.

Notice that each mj counts the number of ones appearing in the jth column
of E and M j counts the number of ones in columns°throughj. For notational
ease, we set M_ I = 0. We have M j <; MJ+1> M j + mj+1 = MJ+1> and Mn- I = n.

We call the numbers M j P6lya constants since he was the first to study their
importance in interpolation problems of this type.

DEFINITION 1.4. The incidence matrix E is said to satisfy the P6lya conditions
ifMj>j+ 1 forj=O, ... ,n-1.
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THEOREM 1.2. A necessary condition for E to be conditionally poised is that it
satisfies the Po/yo conditions.

Proof Suppose for some p we have Mp <po Let distinct points Xl> .•. , Xk be
given. Then there is a nontrivial polynomialp(x) E 1Tp satisfyingpU)(xi) = 0 if
eiJ = 1 andj <p since we have only Mp <p equations and p + 1 parameters.
But p(P+l)(x) == 0 and, hence, p(x) trivially satisfies pUl(x;) = 0 if eij = 1 and
j > p. Thus, the polynomial p(x) interpolates E at the given points. But there
is no restriction on the choice of the points and we see that we can construct
such an interpolating polynomial for any x I, X2, ••• , Xk' Thus, E is not condition­
ally poised and the theorem is proved.

Now let us consider what happens ifequality occurs in the P6lya conditions.
Let Mp = p + 1 for some p less than n - 1. Define incidence matrices E1 and
E2 by:

where

E = II 1.\\ i = 1, ... , k
1 eiJ • 0 'J= , ... ,p

E _II 211 i = 1, ..., k
2 - eij I. 0 2'J= , ..., n-p-

and

ThenEI is a(p + I)-incidence matrix, andE2 is an (n - p - I)-incidence matrix
and E E EI EB E2 • Thus, the interpolation properties of the matrix E depend
solely on the interpolation properties of the matrices EI and E2 as shown by
Theorem 1.1 and Corollaries 1.1 and 1.2.

DEFINITION 1.5. E is said to satisfy the strong Po/ya conditions if M j > j + 2
forj = 0, .. .,n - 2.

By our above remarks and Theorem 1.2, we need only consider incidence
matrices which satisfy the strong P6lya conditions, since all others either reduce
to lower order ones or are never poised.

2. POLYA SYSTEMS

We now wish to focus our attention on the case where interpolation takes
place at only two nodes Xl and X2' That is, k = 2 in our incidence matrices.

There are three reasons for studying the two-point interpolation problem at
this time; Practical-we need the results in Section 3, historical-it seems to
be the first problem of the type we are looking at that was studied, and
aesthetic-the results are particularly "nice" and complete.

Two-point systems (i.e., incidence matrices with two rows) that are poised
if Xl and X2 are taken to be real were characterized by G. P6lya in 1931 [4].
P6lya's characterization was also arrived at independently by J. M. Whittaker
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in his book Interpolatory Function Theory [8J. Our result is slightly more
general, as we allow the points of interpolation to assume complex values.

THEOREM 2.1. [Polya 1931 and Whittaker 1935.J Let E be an n-incidence
matrix. Ifk = 2, then E is poised (unconditionally) if, and only if, E satisfies the
Polya conditions: M j > j + 1 for j = 0, ... , n - 1. We call two-point systems
which satisfy the Polya conditions P61ya systems.

Proof The necessity of the P61ya conditions is shown by Theorem 1.2. We
now assume that E satisfies the P6lya conditions. We first establish the fact
that E is poised when Xl> X2 are taken to be real numbers, and then we shall
extend the results to the complex plane.

LEMMA 2.1. Let E be a two-row n-incidence matrix. Ifxj, X2 are real numbers
(XI < X2) and p(x) is a real polynomial which interpolates E at XI and X2, then
p<J)(x) has at least M j - j distinct zeros on the closed interval [Xl,X2] for
j= 0, ... , n-1.

Proof E specifies mo = M o- 0 distinct zeros for p(x) at XI and X2' so the
lemma is obviously true for) = O. Suppose that pU-I)(x) has at least M J- l ­
(j - 1) distinct zeros on [Xl>X2]' By Rolle's Theorem, pU)(x) has at least
M J- I - (j- 1) - 1 = M j _ 1 - j distinct zeros on the open interval (Xl,X2)'
But E specifies m j (=0, lor 2) distinct zeros ofp(x) at X3 and X2' Hence,pU)(x)
has at least M J- I - j + m} = M J - j zeros on [XI,X2J and the lemma is proven
by induction.

LEMMA 2.2. If E is a two-row matrix satisfying the Polya conditions then E
is unconditionally poised whenever XI, X2 are real.

Proof By Lemma 2.1, ifp(x) E 7Tn-1 is a polynomial which interpolates E at
x 3, X2, then the constant p(n-l)(x) has at least Mn- I - (n - 1) > 1 zeros on
[Xl,X2]. Hence p(n-l)(x) == 0 and p(x) E 7Tn-2' Now, p(n-2)(x) has at least
M n- 2- (n - 2) > 1 zeros on [XI,X2] and is itself a constant. Therefore,
p(n-2)(x) == 0 and p(x) E 7Tn-3' Continuing in this manner, we see that p(x)
must be a constant. But mo = M o> 1 and, hence, p(x) == O. Therefore, E is
poised with respect to Xl> X2, and the lemma is demonstrated.

To prove our theorem, we let Xl' X2 be arbitrary points in the complex plane
(XI =1= X2) and suppose that p(x) E 7Tn-1 is a polynomial which interpolates E
at Xl> X2' Define q(x) = P«X2 - XI)X + Xl)' Then q(J)(O) = (X2 - XI)lP(J)(XI),
q<J)(l) = (X2 - XI)}P(J)(X2), and we see that q(x) interpolates E at ZI = 0 and
Z2 = 1. But now q(x) == 0 by Lemma 2.2 and, hence, p(x) == O. Thus, E is indeed
poised, and the theorem is established.



G. D. BIRKHOFF INTERPOLATION PROBLEMS 7

3. CONDITIONALLY POISED SYSTEMS

In this section, we shall characterize those systems which are conditionally
poised in terms ofthe Polya Constants M j •

Let E be an n-incidence matrix with k rows and suppose that E satisfies the
P6lya conditions, i.e., Mj;;"j + I for eachj. We shall examine the matrix E'
obtained from E by suppressing its kth row. E' need not be an incidence matrix
because it may have less than n nonzero entries. However, we can decompose
E' into an alternating series of incidence matrices and zero matrices as we
describe in the following paragraphs.

Suppose the kth row of E contains t> 0 ones. Suppressing this row we
obtain a matrix

E' = Ileull ~ = 1, , k - 1
J=O, , n-l

which contains n - t ones. Let M/ be Polya constants for E' and choose a
sequence of integers

(3.1)

satisfying

M/=O
M/;;"j-jo'

M/ =J/ -jo'
M/;;" (j - 12') + (jj' - jo')

M/ = U/ - 12' + (11' - N)

ifj <jo'
ifJo' + 1 <,j <,jl'

ifiJ' + 1<} <,12'

ifj/ + 1 <,j<j/

ifN + 1<j <,j/

M/ ;;" (j - j;p-2) +U;P-3 - j;P-4) + ... +
+ (N - h' + (N - N) ifj;p_2 + 1<,j <,j;p-j I

M/ = U;p-j - j;p-2) + ... +Uj' - jo')

if j;P-l <,j <,j;p )1
/M/ ;;" U - j;p) +U;p-l - j;P-2) +... +Uj' - jo')

ifj;p + 1 <,j <,j;p+l

(3.2)

and finally M'hp+1 = n - t.
In order to choose a sequence (3.1) satisfying the conditions (3.2), we

proceed as follows. If the first column of E' contains a one, we let ]0' =-l.
Otherwise we letjo' + 1 be the index of the first column in E' having a one in it.
Obviously, we must have M/ = 0 if j <10'.

Having chosen.io', we suppress columns 0 throughjo' of E' to obtain a new
matrix. We letj j ' + 1 be the index in E' of the first column of the new matrix
where the P61ya conditions fail. Then we have M/;;"j - jo' ifjo' + I <j<,ij'.
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Note that, since this new matrix first fails to satisfy the P6lya conditions at the
column labeledjl' + 1 in E', we must have m;'l+l = o.

We now suppress columns 0 throughj3' of E' to obtain another new matrix.
We let N + 1 be the index in E' of the first column in the new matrix
having a one. Since m;l'+l = 0, we have N + 1 > N + 1 and we also have
M/ = N - jo' if jl' + I <i<i/o We continue in this fashion to construct a
sequence (3.1) satisfying (3.2) and, by our construction, we see that the sequence
is uniquely defined.

As an example, let

0 1 1 0 0 0 1 1 0 0
E= 0 1 0 0 0 0 0 0 0 o .

1 0 0 1 1 1 1 0 0 0

Then

E' = 1/
0 1 1 0 0 0 1 1 0 011o 1 0 0 0 0 0 0 0 0

and, for the sequence (3.1), we havejo' = O,N = 3,N = 5 andj/ = 7.
Now let kq = j~q+1 - j~q, let Er be the matrix consisting of columnsj;_1 + 1

throughj/ of E' and let E2p+2 consist of columnsj~p+J to n - I of E'. By our
construction, we see that Er is a zero matrix if r is even and it is a kq-incidence
matrix satisfying the P6lya conditions if r = 2q + 1. Finally, we write E' =
Eo +E 1 + ... + E2p+2' In our example, we would have

We note that ko+ k1+ ... kp = n - t and the total number of columns in all
the zero matrices is t.

We are now in a position to demonstrate a theorem characterizing condition­
ally poised systems.

THEOREM 3.1. An n-incidence matrix

E = lIeull ~ = 1, , k
]=0, , n-l

is conditionally poised if, and only if, the P6lya conditions: M j :> j + 1 for
j = 0, ..., n - 1 are satisfied.

Proof The necessity ofthe P6lya conditions has been shown in Theorem 1.2.
Suppose that the P6lya conditions hold and that the theorem has been

demonstrated for all m-incidence matrices with m < n. We must now find points
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X I' ... , Xk so that E is poised with respect to them. Suppose that the kth row of
Ehas tones it it. We suppress this row to obtain the matrix

E' = Ileijll ~ = 1, , k - 1
J=O, , n-l

and, following our remarks preceding Theorem 3.1, we write E' =Eo+ ...
+ E2p+2 where the even-numbered matrices are zero and the odd-numbered
ones are kq-incidence matrices satisfying the P6lya conditions, the sum of the
numbers kq being n - t. By our inductive hypothesis and by Lemma 1.1, we
can choose distinct points XI> ••• , Xk-I so that each of the matrices E2q+l is
poised with respect to these points.

To begin our discussion, let us pick a maximal collection oflinearly indepen­
dent polynomialsPI (x), . .. ,p,(x) which interpolate E' at the nodes XI>"" Xk-I

so that the leading coefficient ofeach is one and so that their respective degrees
nj satisfy 0 ~ nj ~ n2 < ... < n, ~ n - 1. We must have r? t since we have n
parameters to determine and only n - t equations.

Consider now the polynomial Pj(x) of degree nj' It is impossible for n j to
satisfyj~q + 1 ~ ni ~j~q+l for any q since, if it did, the eEl + l)st derivative of
Pi(X) would be a nontrivial polynomial of degree less than j~q+1 - j~q = kq
interpolating matrix E2q+1 at the nodes Xl> .•• , Xk-j which is impossible by our
choice of Xl' , Xk-I' Therefore, the only possible values for the distinct
numbers nl> , n, are the t numbers m which satisfy j~q+j + 1 .s;; m .s;; ~q+2 for
some q. Since r? t, this yields r = t, and we can set up a one-to-one correspon­
dence between the polynomials and the columns of the zero matrices in E'
by matching each such column with the polynomial having degree equal to the
index of the column in E'.

In our example, we can choose XI = 0 and X2 = I to make Ej and E3 poised.
Then, for our polynomials, we can choose

PI(X) = 1

pix) = x4
- (4/3) x3

P3(X) = X
S

- (5/3) x3

P4(X) = x 8- (8/5) XS

Ps(x) = x 9
- (9/5) X S

of degree 0 = N
of degree 4 = jl' + 1

of degree 5 = N
of degree 8 = N + 1

of degree 9 =N + 2 = n - 1.

Now, in our discussion, we see that we can choose a point Xk so that E is
poised with respect to x I> ••• , Xk-j, Xk if, and only if,

P(X) = det [p~j)(x)] r = 1, ..., t
ekj = 1

is not identically equal to zero.
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LEMMA 3,1. Let PI(X), "" Pt(x) be polynomials with leading coefficients one
andofexact degrees nl, , , " nt, respectively, Let 0 <:Jl < " . <it be given integers.
Then the polynomial

P(X) = det[p~js)(x)] i = 1, , t
s=l, ,t

is identically zero only if

det[DUs) xni] i = 1, .. " t
s = 1, .. " t

is identically zero,

Proof P(x) is a sum of terms of the form +p~lMx)pVtl>Cx) ... p~tMx)where
the summation is taken over all the permutations 7T ofthe sequence 1, .. " t. The
term ofmaximal degree ofeach summand is ±DU,) xn1T

(I) ••• DUd xn1T(t), which is
either zero or of degree "L~=l ni - "L~=lji' Therefore, if P(x) is identically zero,
the sum of these terms must be zero. But their sum over all permutations of the
sequence 1, ..., tis equal to

det[D(js) x(ntl] i = 1, , .. , t
s = 1, .,., t

and this proves the lemma,

LEMMA 3.2, If 0 <:JI <jl < ... <jt';;;;;' n - 1 and the numbers ni are increas­
ing and satisfy ji ,;;;;;. ni ,;;;;;. n - 1, then

det[D(jp) x(nt)] i = 1, ... , t
P = 1, .. " t

is not identically zero.

Proof Consider the two-point interpolation problem defined by

- N i = 1, 3
E= Ileull '-0 1J- , ...,n- ,

where Xl is taken to be zero,

__ {O ifj= nl>"" nt and __ {I ifj=jl'" ·,jt
elj - 1 otherwise' el j

- 0 otherwise .

The linear system corresponding to E consists of the n equations in n
unknowns given by DU)[ao+ al X + ... + an-l xn- l ]X=Xi = 0 if eij = 1. Now, if
we look at the equations corresponding to elj = 1, we see that aj = 0 if eu = 1
since Xl = 0, Thus, the determinant ofthe linear system reduces to

det[DUp) X~i] i = 1, , , " t.
p= 1, ',., t
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Now, looking at the matrix i, we see that Mj ;;;:, j + 1 if j < nj, where Mj are
the P6lya constants for E, since elO = ... = el,1I1-1 = 1. But e2,it = 1, II < nl
and, hence, M1I1 ;;;:,n3+1. Also, ej,1I1+1= ... =ej,1I2-1=1, which yields
Mj ;;;:' j + 1 ifj < n2' But e2,h = 1 andj2 < n2 give M1I2 ;;;:, n2 + 1. Continuing in
this manner, we easily show that Mj;;;:,j+ 1 for j=O, ... , n- L Thus, by
Theorem 2.1, Eis poised; hence

det[D(j) X~iJ i = 1, .. 0' t
e2j = 1

is nonzero and the lemma is proven.
Now, let us return to our matrices E and E'. We see that, if the entries in

the kth row of E that are one are ekjp ... , ekj" then we need only show that
ns ;;;:, js for each s. For if this holds, then, by Lemma 3.2,

det[D(jp) xlIi] i = 1, , t
P = 1, , t

is nonzero and, hence, by Lemma 3.1, P(x) is not identically zero. Then aU we
need to do is pick a point Xk, different from each of the points Xl' ... , Xk-l, for
whichP(xk) =1= 0, andEwill be poised withrespectto the nodes Xj, '0 o,Xk-I' Xk-

LEMMA 3.3. IfE satisfies the P61ya conditions, then we must hace an ns ;;;:, js for
s = 1, ... , t.

Proof Let ns be the degree ofone ofour polynomials and let Co, ... , Cn• be the
first ns + 1 columns of the matrix E'. We know that there is a q so thatj~q+ j +
1 < ns <j~q+2' Now, the columns Co, 0'" ClI• can be divided up into those that
are columns of the matrices Eo, E2q •.• , E2q+2 , and those that are columns of the
incidence matrices E I , E3, •• 0' E2q+J' From the relations (3.2), the total number
of columns of the incidence matrices Ej , ••• , E2q+j is given by M:, = k 1 + .. 0 +
k q , while the total number ofcolumns belonging to the even-numbered matrices
is s. Hence, ns + 1 = M:, + s, or, M:, = (ns + 1) - s.

Now M lI, = M:, + 2j~oekj' Thus, if E satisfies the P6lya conditions, then
Mo,;;;:' ns + 1 which implies that 2j~oekj ;;;:, s. But this is true if, and only if, each
of the numbers jp satisfies jp < ns for p = 1, ... , s. Thus we have f, < n., for
s = 1, ... , t, and the lemma and, hence, the theorem is proved.

4. (UNCONDITIONALLY) POISED SYSTEMS

Subsection 1: Hermite Systems

We have already seen one type of poised systems in Section 2, namely the
Polya systems, where k = 2 and the P6lya conditions are satisfied.
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We now define another class of poised systems. We say that a system E is a
Hermite system ifEhas the following property: eij = 1implies eii' = 1forj' <"j.

For example, the system

I I 0 0 0 0
1 1 1 000
1 0 0 0 0 0

is a Hermite system, as is every system describing a Newton-Lagrange inter­
polation, where k = nand elO = ... = eno = 1, and every system describing a
Taylor interpolation, where k = 1 and elO = ... = el, n-I = 1. However, a
system such as

100
010
100

is not a Hermite system.

THEOREM 4.1. IfE is a Hermite system, then E is (unconditionally) poised.

Proof Let E be a given Hermite system with k rows, and let Xl> ••• , Xk be
distinct points. Assume, for simplicity, that E has no zero row. Since E is
Hermite, we have eiO = ... = ei,exi-I = I for each i, where 2:7~llXi = n. But this
means that any polynomial which interpolates E at the given nodes must have
a zero oforder at least lXi at Xi' Since 2:7= I lXi = n, if such a polynomial has degree
less than n, it must be identically zero, and the theorem is proved.

Subsection 2: Two Examples

Consider the two S-incidence matrices given by

1 1 0 0 0
E= 1 0 0 0 0

1 1 0 0 0
and

1 0 1 0 0
E= 0 1 0 0 O.

1 1 0 0 0

What we intend to do here is to give a proof that E is unconditionally poised
(although we already know that from Theorem 4.1) and that E is not un­
conditionally poised, in order to illustrate the techniques we wish to develop
in the remainder of the section.

Let e3i1 and e3i2 be the elements in the third row of E that are one. Thus,
jl = 0 andh = 1. Define sequencesli = (m/,m21) for i = 1, 2asfollows: Let mil
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be the column index ofthe first zero in the sequence e112' ••• , el, n-l- Let m21 be the
column index of the first zero in the sequence e1h' , el , n-l if mil <jz_ If
mil> j2, let m21be the column index of the first zero in the sequence efml' ... ,
et, n-lo Analogously, let e3. f1 and e3. t2 be the ones in the third column of£ and,
in the same fashion, define the sequence II for M. Note that t l = 0 and t2 =1.

We have II = (2,3), 12= (1,2), II = (1,3) and 12 = (0,2). Observe what
happens if we let Ibe any of the four sequences and ifwe replace the third row
of the corresponding matrix by the row defined by

{
I ifj EI

e3"j = 0 otherwise

and then allow the new third row to "coalsece" with the row corresponding to I
(first row if1= II or 1 = 11> second row if1= 12 or I = 11), We get

Ell =II~
1 1 1

~II, E l2 =11~
1 o 0

~II,000 1 1 0

- III 1
1 1 011

£12 =II~
0 1 0 Oli

Eil = 0 1 0 0 01 ' 1 1 0 011'

and all four matrices are conditionally poised.
From Section 3, we can write

E'=II~
1 0 0

~II=II~
I

~11+11~ ~II,0 0 0 0

E'=II~
0 1 0

~II=II~
0

~II+II~ ~II,1 0 0 1

and, if we choose XI =0, Xl =1, then the six matrices: Ell' Ell for i = 1,2, and

II
I 1 0Il '11 0 111
1 0 0' 10 1 01'

are all poised with respect to these points. Now, we can choose PI (x) = x) - Xl
and P2(X) = x 4 - Xl as interpolating polynomials for E' and ql(x) = (1/3)x3

­

X, qzCx) = (1/4)x4 - X as interpolating polynomials for E'.
Let

and

Q(x) = det[ QI(X)Q2(X)] = x
3

(x - 1)(x2+ X - 8).
ql '(X)q2'(X) 12

Notice that P(x) has a zero of order 4 = (mil - jl) + (m21 - jz) at XI' and a
zero of order 2 = (m1 2 - jl) + (ml- jl) at X2' Also Q(x) has a zero of order
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3 = (mil - t l ) + (m21- t2)atxI, and a zero oforder 1 = (m1 2 - t l ) + (m1 2
- t2)

at X2'

The crucial thing here is that the sequences Ii and Ii enable us to obtain the
exact order of a zero of the corresponding polynomial at Xi' and it is this
property which we now wish to exploit in our characterization of uncondition­
ally poised systems.

Now P(x) has all of its zeros at 0 and 1. Hence, given any other point X,
P(x) =1= 0 and E is poised with respect to 0, I and x. This is not quite a proof
that E is unconditionally poised, but it is enough for our purposes here. The
important thing is that Q(x) does not have all its zeros at 0 and 1. Hence,
there is a point X different from 0 and 1 for which Q(x) = O. Thus, by the
remarks in Section 3, Eis not poised with respect to the points 0, 1 and X and
this shows that Eis not unconditionally poised.

Subsection 3: The Sequences Ii

Throughout this section, we assume that E is an n-incidence matrix with k
rows and that E satisfies the P6lya conditions. We assume, further, that the
kth row of E contains exactly t> 0 ones, given by eki!' ... , ekj,'

For each i = 1, ... , k - 1, define a sequence Ii = (ml i, ..., mt
i) as follows:

Let ml i be the column index of the first zero in the sequence eiip ... , ei,n-I'
Assuming that ml i, ... , m~_1 have all been defined, where p <, t, let oc =
max(jp,m~_1 + 1) and let m/ be the column index for the first zero in the
sequence ei,(f."'" ei,n-I'

Before showing the existence of such a sequence for each i, let us prove the
following

LEMMA 4.1. If the sequence Ii exists, then it satisfies:

(i) 0 <, ml i < m2i < ... < m/ ,,;;; n - 1;

(ii) For each q,jq <, mqi and ei, mqi = 0;

(iii) If the sequence eijp' , ei, mpl contains q zeros, then these q zeroes are
given by ei. mip_q+l' ei, mlp-q+2' , ei. mip'

Proof Conditions (i) and (ii) easily follow from the definition of the sequence
1;. To show that (iii) holds, we observe that ifp = 1, then, by the definition of
1;, the sequence eii!' ... , ei, mil contains exactly q = I zeros given by ei, mil = 0,
and (iii) holds.

Suppose that we have shown (iii) to hold for mil, ... , m~_I' and suppose that
the sequence eiip' ... , ei,mpl contains q;> 1 zeros. If q = 1, then (iii) trivially,
holds. Ifq > 1, let eij be the last zero in the sequence before el,mpl' Ifj =1= m~_I'

thenj;> max(jp,m~_1+ 1) and, by definition,j;> mp
i , which is a contradiction.

Therefore,j=m~_I' Now, the sequence eijp_p ... , ei,mip_1 contains q-l or
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more zeros. But, by the induction hypothesis, the last q - I zeros are given by
ei. mip_q+p ... , ei, mip_p and this shows that (iii) holds for p and, hence, the lemma
is proved.

LEMMA 4.2. For each i = 1, ..., k - 1, the sequence Ii exists.

Proof If ml i did not exist, then we would have eiil = ... = ei, n-l = 1. But
Mil - l >jl and, since ekil = 1, we must have M n- j >jl + 1 + (n - jl) = n + 1
because of all the ones in the ith row. But this is impossible, so we must be
able to construct ml i.

Ifm/, . ..,m~-l have all been constructed forp < t,andif ei,a = ... = el,n-l =
1, where IX = max(jp,m~_1 + 1), let q be the last integer satisfying mqi <jq+1 (if
no such integer exists, take q = 0). Then, in the sequence euq+l' ... , ei, n-l, there
are exactly p - (q + 1) zeros, given by el,miq+p ... , ei, miq_1 and, hence, there are
n - jq+1 - P + (q + 1) ones in the sequence. Also, we haveek,jq+, = ... = ekit = 1.
Thus, since M jq+d > jq+I, we have Mn- l > jq+1 + n - jq+I - P + (q + 1) + t­
q = n + t - p + 1 = n + 1, which is absurd. Thus, we must be able to define
mp

1 and the lemma is proved.
Now let S = (S1> , St) be an increasing sequence of integers satisfying

jq < Sq for eachq = 1, , t. Fix anith row(l < i <k -l)inE, and define a new
matrix Es by replacing the kth row of E with a row k defined by

e- _{I ifjES
kj - 0 otherwise

and then allowing the new kth row to coalesce onto the ith row ofE.

LEMMA 4.3. Ell is an n-incidence matrix satisfying the P6lya conditions while,
in general, Es is an n-incidence matrix only if S satisfies Sq> mq

l for each
q = 1, ... , t.

Proof LetMjdenote the P6lya constants for Eli and let Ii = (ml"'" mt ). We
certainly have Mj = M j >j+ 1 if j <jl -1. Now eijl = ... = ei.ml-l = 1 and
this gives Mj >j+ 1 ifj < mj - 1. But in Eli' elm I = 1, yielding Mm, > mj + 1.

Suppose now that we have shown Mj > j + 1 for j < mp-b where p < t.
Ifmp_l >jp, then, by definition ofthe sequence I;, we have eimp_l = ... = eimp = 1
in the matrix Eli' and this gives Mj >j+ 1 forj < mp' Ifmp_l <jp, then Mmp_1 =

M mp_
1

- (p - 1) + (p - 1) = Mmp-b since the (p - 1) ones in the kth row of E
that are not counted by the number Mmp_1 are compensated for by the fact
that ei, »II = ... = ei, mp_1 = 1 in Eli' Thus, we have M:j = M j > j + 1 for
j = mp_b ..., jp - 1. Now, the fact that in Ell' eijp = '" = eimp = 1 gives Mj >
j + 1 for j < mp •
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By induction then, gj;;;' j + 1 for j.;;; mt • But gm, = Mm,. which yields
gj;;;' j + 1 for j = 1, ... , n - 1, and the first part of the lemma is proved.

Now consider the matrix Esand suppose that it is an n-incidence matrix.
If Sl < ml> then, using the definition of ml> we have eisl = eksl = 1 and, hence,
Es would have fewer than n entries. Thus, Sl ;;;. mi'

Suppose now that we have shown Sq;;;' mq for q = 1, ... , P = 1 where p.;;; t.
If sp < mp, then mp_1 .;;; sp < mp' But, if mp_1 = sp, we have Sp_1 = mp_1 = Sp,
which is impossible under the assumption that S is an increasing sequence.
Now,for mp_1 < sp < mp, eisp = e'ksp = 1 andEs has fewer than n entries. Thus,
if Es is to be an n-incidence matrix, we must have Sq ;;;. mq for each q, and the
lemma is proved.

Subsection 4: The Polynomial P(x)

As in Subsection 3, E is to be an n-incidence matrix satisfying the P6lya
conditions. E is assumed to have k rows and the kth row has t ones in it given
by ekh' ... , ekj,' We let E' be the matrix obtained from E by suppressing its
kth row,just as we did in Section 3, and we write E' = Eo +E I + '" + E2p+1 +
E2p+2,where the even-numbered matrices are zero matrices, the odd-numbered
ones E2q+1 are kq-incidence matrices satisfying the P6lya conditions, and
2:=0 kq = n - t.

LetIl> [2•... ,Ik-I be the sequencesforE that were discussed in the last section
and choose points Xl> ... , Xk-I so that the matrices E2q+1 for q = 0, .. .,p, and
Eli for i = 1, ..., k - 1 are poised with respect to these points. Construct the
interpolating polynomials PI (x), ... , plx) as in Section 3, where the degrees of
the polynomials are increasing and the leading coefficient ofeach is 1.

LetR(x) represent the vector [PI (x), .. .,PtCx)]. Define the polynomialP (x) by

P(x) = det [R(Ji)(x), ... , R(Jt)(x)].

We now wish to investigate this polynomial which determines whether or not
there is a pointxk so thatEis not poised with respect to XI' ..., Xk-l> Xk.

We need the following algebraic lemma:

LEMMA 4.4.

p(r)(x) = 2 det [R(J!+r1)(x), ... , R(J,+rt)(x)],

where the sum is taken over all sequences rI, ..• rt ofnonnegative integers satisfy­
ing 2~=1 rq = r andjl + r1 <j2 + r2 < ... <jt + rt.

Proof.

t

P'(x) = L: det [R(Jl)(X), ... , R(Jq+1)(x), ..., R(J,)(x)].
q=1
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We can delete from this sum those determinants in which jq + 1 = jq+l since
such a determinant has two identical rows and, hence, is zero. Thus, we can
write

rex) = L: det [RCJJ+r)(x), ..., RUt+rt(x)],

where the sum is taken over all sequences flo ••• , f t of nonnegative integers
satisfying L:~=I f q = 1 andjJ + fJ <jz + f2 < ... <jt + ft·

Suppose the lemma has been demonstrated for pcr-l)(x). Then

PCrl(X) = Dx{L: det [RCJJ+r1)(x), ... , RCMrtl(x)]}

where the summation is over all sequences which add up to r - 1and for which
jl + rj < '" <jt + rt. We have

pcr)(x) = 2: {Jl det [RUl+rJ)(x), ..., RCjq+rq+l)(x), ... , RUq+rq)(x)]};

since we can again delete all the terms in which, for some q,jq-J + fq_1 + I = jq,
and since L:~=l rq + 1 = r, we have

p<r)(x) = L: det [RuJ+rJ)(x), ... , RUt+rt)(x)],

where the summation is taken over all sequences of nonnegative integers which
sum to r and for whichjJ +rl < ... < it + ft. The lemma is, thus, demonstrated.

Now let the sequence Ii be given by Ii = (m!> ... ,mt ) and let m =

L:~=J (mq- jq). The following important lemma tells us about the zero ofP(x)
at the point Xi'

LEMMA 4.5. P(x) has a zero ofexact ofder m at the point Xi'

Proof Suppose r < m. Consider the sequence R = (jJ + rl,· . .,jt + f t) in
Lemma 4.4. The summand corresponding to this sequence is exactly the
polynomial one would get by looking at the matrix obtained from E by
replacing its kth row by the row

{
I ifjER

e- -
kj - 0 otherwise.

But then, allowing x = Xi' means that we are looking at the polynomial we
would get by letting row k and row i coalesce, i.e., we are looking at the linear
system corresponding to the matrix ER as in Lemma 4.3.

Now, the condition that L~=J f q = f < mmeans that for someq we must have
jq + f q< mq. Using Lemma 4.3, this means that ER is not an n-incidence matrix
(in fact, ER has fewer than n entries) and, therefore, can be interpolated by a
nontrivial polynomial of degree less than n. But this implies that the linear
system corresponding to it must be identically zero and, hence, the appropriate

2
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term p<r)(xi) is zero. Now, this analysis holds for each term in the makeup of
p<r)(XI) and, hence, p<r)(Xi) = 0.

For the same reason, each term in the expression for p<m)(XI) is zero, except
for the one where eachjq + r q = mq • This sequence is Ii, and the corresponding
term is the polynomial for the matrix Eli at the points XI, .. "Xk-I' By our
selection of these points, this matrix is poised with respect to them, and the
term cannot be zero. Hence, P <m)(Xi) i= 0, and the lemma is proved.

Subsection 5: Estimating the Zeros ofP(x)

In this subsection, we assume thatE is an n-incidence matrix withk rows and
satisfyingthestrongP6lyaconditions: Mj;;;.j + 2forj = 0, .. .,n - 2 (Def. 1.4).

Again, let the kth row of E contain t ones, let their column indices be
jl> " ·,jt and let E' be the matrix obtained from E by deleting its kth row. We
write E' = Eo + EI + 00. + E2p+1 + E2p+2as before. Choose points Xl> 00" Xk-I
so that the matrices E2q+! and Eli are all poised with respect to them, and form
the polynomials PI(X), ..., Pt(x) of increasing degrees nl < ... < nt, where the
numbers nl correspond to the column indices in E' of the columns of the
matrices E2qo Also, form the polynomial P(x) as in the last section. We note
that Mo = mo ;;;, 2 and, hence, io' = -1 (see the beginning of Section 3) and the
matrix Eo is empty. Thus, we have E' = EI + ... + E2P+2'

We shall now prove a series oflemmas that will allow us to estimate the size
of the numbers Itl (mql

_ jq).

LEMMA4.6. We must havejl < nl and,jorq > l,jq < nq_I'

Proof Since E satisfies the P6lya conditions, Lemma 3.3 yields jq < nq for
each q. However, if jl = nl' we have M n1 - 1 = M~l-I = nil which contradicts
the assumption M n1 - 1 ;;;, nl + 1. Hence,iJ < nl'

Consider the polynomialp.(x) of degree ns. We know (Section 3) there is a q
so that j~q+1 + 1 < ns <j~q+2' Now, from the relations (3.2), we have Mn• =
M~s+ Ij~o ekjandM~.= (m. + 1) - s. Supposethatwehaveshownj2 < nl" 00'

js < n._1 where s < t. Then we have ns + 2 < M ns = (n. + 1) - s + I~o ekj' If
js+! > n., then 2:j:o ekj = s and we have ns + 2 < n. + 1, which is impossible.
Thus,js+1 < n., and the lemma is proved.

LEMMA 4.7. For each q and i, mql < nq.

Proof We have jl < nl and einl = 0. Hence, we must have mil < nl for
each i. Suppose we have shown m~_1 < n._1 for each i. For any i, let oc =
max(j.,m~_1 + 1). Since js < ns-I, m~_1 + 1 < ns-I + 1 < n. and ei.n. = 0, we
have oc < ns and, thus, m/ < ns for each i. This proves the lemma.
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LEMMA 4.8. Suppose a is apositive integer so that m~-a-J <js - a, andsuppose
m~ ~ js for some q satisfying s - a < q <, s - 1. Then the sequence ei.is-a' ... ,
ei, is-J must contain at least (s - q) ones.

Proof If the sequence in question contains fewer than (s - q) ones, then it
contains at least b = a - (s - q - 1) zeros given by ei,q, "0' ei,Cb' Now
js-a <,js - a <, ei,cp m~-a-J < ei,q and, hence, m~-a <, ei,cl also jx-a+l <,is - 0 +
1 < ei,C2 yields m~-a+I <, ei,C2' Continuing in this manner, we get is-a+b-J =

jq < ei,Cb and, hence, mqi < ei,Cb <,js - 1, which is contrary to our assumption.
Thus, the lemma is proved.

Now let Pr be the number of columns in the matrix E2r and let Po = O. We
have the following relationship:

LEMMA 4.9. Suppose column js of E' lies in the matrix EZq+l +E2q+2' Let
IXr = (s - 1) - Po - ... - pJor each r. Then, eitherfor some reO <, r <, q), column
js - IX, lies in the matrix E2r+I ; or, if this fails for each r, column js - aq lies in
E2q+2 •

Proof Ifjs - OCq~ npO+P1 + ... +Pq+J, then columnjs - aq lies in Ezq+z and we are
finished. Suppose now thatjs - a q< npo+... +Pq+J' Let r be the smallest integer
so that js - ar < npo+... +Pr+ J ' If r = 0, we have js - (s - 1) < nl and, hence,
columnjs - (s -l)isinEJ • Ifr > 0, we have npo+... +Pr-l+l <js - ar-l <js - ar
since r is minimal. Adding Pr to both sides, we get npo+,., +Pr-i+J +Pr <,js ­
ar-J +Pr = js - ar· But npo+... +Pr-I+I is the column index of the first column
of E2r and, since E2r has exactly Pr columns, npo+... +Pr-l +I + Pr is the
column index of the first column of E2r+1' This now gives us the fact that
columnjs - IX, is in EZr+I' and the lemma is proved.

We are now ready to establish our estimates for the numbers Lt~; (mqi - jp).

THEOREM 4.2. IfE satisfies the strong Polyo conditions, then we have

k~1 ( i .) {nl - jl - 1 ifjl > °
L., ml -11 < .
I~I nJ -11 ifjl = 0

and,jor
k-I

S = 2, ... , t, L (m,i -js) <, ns- is·
i~1

Proof The number (II - jl) counts the number of consecutive ones in row i
starting with columniJ. Now this cannot exceed the number of ones in row i
between columns jl and nl> since mil <, nl' This means that 2~:;i (mJ i - jl) is
no larger than the number of ones in the matrix E I between columns jl and nl'
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Now, if il = 0, this number is nl = nl -kIf il > 0, then we observe that
M/ = M i for i ~il - 1, since eki = 0 for i ~il - 1. But this means that, in the
first il columns of E 10 there are at least MJ1-1 ;;;.il + 1 ones and, hence, the
number of ones from the ilst column to the n1st column is no more than
n - U+ 1). Therefore, the first statement of the theorem is proved.

Suppose that co1umnis lies in the matrix Ezq+I +Ezq+z, and that s > 1. From
Lemma 4.9, there are two cases. To begin with, let us assume that column
is -lXq lies in the matrix EZq+2' Then the sequence el,is-lXo' ..., el,is-1o eli.
contains nothing but zeros. Lemma 4.7 gives ms-lXo-1 = mpo+. .. +Po ~ npo+. .. +Po
<is - IXq• Thus, Lemma 4.8 tells us that m~_1 ~is - 1 and, hence, msl = is.
Therefore, L~:l (msl - is) = 0 ~ ns- is.

The remaining case is that for which there is an r so that column is - IXr lies
in the matrix EZr+l' Then ms-lXr-l = mpo+... +Pr ~ npo+... +Pr <is -lXr. Now
(msl - is) counts at most the number of ones in row i between columns is to ns.
Plus, it counts one for each mp

l that is larger thanis - 1, where P ~ s - 1. But
the conditions of Lemma 4.8 are met for a= IX" and this means that each m/
that is larger thanis - 1 is compensated for by a one in the sequence el, i.-lXr"'"
el.is-l' Thus, (msl

- is) counts at most the number of ones in the ith row from
columnis - IXr to column ns. Hence, L~:l (m/ - is) counts at most the number
of ones in the matrix E' from column is - IXr to column ns. This number is
M~s - M;.-IXr-!· From the relations (3.2), we have M~s = ns - s + 1. Also, we
note that, if there was a one in each of the columns n1, ••• , npo+... +Pr' E' would
satisfy the P6lya conditions down to the last column ofEZr+l' Thus, M;.-IXr-! ;;;.
is - IXr- Po - ... - Pro We now have L~:l (msl - is) ~ M~. - M;.-IXr-! ~ ns-s +
1 - is + IXr+Po + ... +Pr = ns - is> and the theorem is proved.

Subsection 6: A Characterization ofPoised Systems

We are now ready to prove our major theorem on (unconditionally) poised
systems.

THEOREM 4.3. IfE satsifies the strong P6lya conditions, then E is uncondition­
ally poised if, and only if, E is a P6lya system or a Hermite system.

Proof. The sufficiency has already been demonstrated in Theorems 2.1 and
4.1. Suppose that E satisfies the strong P61ya conditions and that it is uncon­
ditionally poised. Then it is necessary that the polynomial P(x) have no more
zeros than those it has at the points X10 ••• , Xk-I' Now P(x) has degree equal
to .L~-l nq - L~=I iq. At the point Xl' P(x) has a zero of order .L~-l (mql

- iq).
Hence, we must have
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or

{
-I ifjj > 0

0<·0 ifjj=O'

Thus, in order that E be poised, it is necessary that jj = 0 and that equality
hold in each oftheestimates ofTheorem 4.2. Since we must have L~:f mil = nl,

E I must be a Hermite matrix.
Suppose EI has the only one nontrivial row. Then E must be a P61ya matrix.

To see this, suppose that the nontrivial row is the first and that E j has a one in
the second row. The columns of the matrix E2 have indices nj, ... , np1 ' Now
jpl+l < np1 yields the fact that the columnjpl+l - PI is in the matrix E j • Also,
to be maximal, (m;l+l - jpl+l) must count the one in the second row of E3•

But e2i = 0 for j < np1 immediately gives m;l+1 = jpl+1 and, hence, (m;l+j ­
jpl+l) = O. Thus, if E 3 has a nontrivial row other than the first, L~:: (m~l+l ­
jpl+I) is not maximal, and E is not poised.

Now assume that we have shown that E3, ••• ,E2«_1 have only one nontrivial
row and that that row is the first in each of the matrices. If the second row of
E2«+I has a one it it, then we must have (m;l+ +Pq+I - jpl+ +Pq+l) ;;. 1. But
again mr=jr for r<np1+... +Pq and, sincejpl+ +Pq+l <np1+ +Pq' we have
(m;l +... +Pq+! - jpl +... +Pq+l) = 0 < 1. Thus, by induction, each E2«+l canhave
only one nontrivial row, and that row must be the same as the nontrivial row
ofE 1• Therefore, E has only two nontrivial rows and, hence, is a P6lya matrix.

Now, ifE1 has more than one nontrivial row, E must be a Hermite matrix.
To establish this, we first show that E' = E I + E2• If there were another matrix,
E3, with a nontrivial row (say the first), then (m;l+1 - jpl+l) ;;. 1. But the
sequenceel, nt-I, ... , el, np1 consists entirely of zeros (if el, nl-I = 1, then the fact
that E I is Hermite implies that E can only have one nontrivial row) and, hence,
m~t+1 =jPl+!' This is impossible since (m;t+1 - jpl+!) must countthe one in the
first row ofE3• Therefore, we must have E' =E1 +E2•

To show that E is Hermite, we now only need to show that is = 8 - 1 for
s = 1, ... , t. We already know thatjl = O. Since E' = E I + E2, we know that
columnjs - (8 - 1) must be in E. Also, we need the relation L~:i (m/ - js) =

ns - is. But L~:f(m/ - js) counts at most the number of ones in E1 from the
Us - 8 + l)stcolumnon. Ifjs;;' 8, thisnumberisatmostnj - Us - (s - 1) + 1) =
nj + (s - 1) - is - 1 = ns - js - 1. Hence, we must have js < s. This gives
js = 8 - 1, which shows that E is a Hermite system and completes the proof of
the theorem.



22 FERGUSON

To illustrate this theorem, let us return to the two examples of Subsection 2.
Both matrices satisfy the strong P61ya conditions. The first matrix was a
Hermite systemand so must beunconditionallypoised. Thesecondmatrixrepre­
sents neither a Hermite nor a P61ya system and, hence, cannot be uncondition­
ally poised. As a matter offact, ifwe choose XI = 0 and X2 = 1, then as we have
shown in Subsection 2 of the present section the polynomialP(x) associated
with this matrix is given by P(x) = x 3j12(x - 1)(x2 + X - 8). Now, we can
choose X3 to be either of the values (-1 ± V33)j2, so that P(X3) = 0 and the
system is not poised with respect to the given points. As a matter of fact, the
polynomial p(x) = Q2(X3)ql(X) - Q,(X3)Q2(X) is a nontrivial polynomial of
degree 4 < 5 which interpolates the system at the given points.

5. REAL SYSTEMS

Introduction

In Sections 3 and 4, we have characterized poised and conditionally poised
interpolation systems under the assumption that the interpolation takes place
in the complex plane. We now wish to analyze these systems when we restrict
the interpolation to points on the real line.

DEFINITION 5.1. An n-incidence matrix is said to be conditionally real poised
if there are real points X I, •.. , Xk so that E is poised with respect to them. E is
said to be (unconditionally) real poised if it is poised with respect to every
collection ofreal points Xl> ..., Xk'

The technique for proving theorems in this chapter will be that of counting
the zeros of a possible interpolating polynomial as was done in proving that
P6lya systems were poised (Theorem 2.1). The device that we shall use for this
is Rolle's Theorem. We should point out here that all the polynomials that we
shall consider will be assumed to be real. This is no loss ofgenerality since, ifwe
can interpolate a system with a nontrivial polynomial when the points are taken
to be real, then the linear system for a real polynomial also has a nontrivial
solution. Rolle's Theorem tells us a little more than the minimal number of
zeros that the derivatives of a given polynomial must have. It also restricts
their location (i.e., they must interlace with the zeros ofthe next lower deriva­
tive) and, for this reason, we are able to show that some systems are poised
provided only that we keep the ordering of the nodes fixed. Consequently, we
make the following

DEFINITION 5.2. E is said to be order poised with respect to the ordering
XI < ... < Xk if it is poised with respect to all possible choices of the points
XI' ..• , Xk under this ordering.
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If, in the proof of Theorem 3.1, we assume that all the incidence matrices
are conditionally real poised, we easily obtain

THEOREM 5.1. E is conditionally realpoised if, and only if, it satisfies the Polya
conditions: M j :;;. j + I lor j = 0, ... , n - 1.

For our discussion, we need the following

DEFINITION 5.3. Let E be a given n-incidence matrix and letp(x) be an inter­
polating polynomial for a given set of points. Let mo be the number of zeros of
p(x), including multiplicities, that are specified by E. In general, let mj be the
number of zeros ofp(j)(x), including multiplicities, that are specified by E but
that are not counted by any of the numbers mo, ..., liz j -1- Let iLl = 0, and

Mj = 2~=1 m]J'
For the matrix

wegetmj = mj = 1for eachjwhile,for the matrix

111 I 0 0 Oil

110 I I 0 0'1 1 ,

111 0 0 0 0 I

we have
mo =2, mo = 3
m3 = 2, n13 = 2
m2=1, n12=O.

The following two lemmas relate the quantities M j and Mj •

LEMMA 5.1. For agivenj, Mj:;;.j + 1 if, and only if, Mj:;;.j + 1.

Proof Obviously, we must have Mj :;;. M j for eachj and, thus, we need only
prove the lemma in one direction. Suppose that M j :;;' j + 1 for eachj and that
for some p we have M p < p. Then, for some j < p, we must have m j = 0 and,
hence, M j = Mj • Let j be the largest integer less than or equal to p such that
mj = O. Then M p <p implies M j <j and, hence, Mj = M j <j, which is a
contradiction. Thus, the lemma holds.

LEMMA 5.2. M j :;;. j + 2 if, and only if, Mj :;;. j + 2 and mo :;;. 2.

Proof Again, the proofin one direction is clear. Suppose now that Mj :;;. j + 2
for eachj, and that mo:;;' 2. If there is ap:;;. I such that M p ~p + 1, choose the
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smallest suchp. Then, since mo;;;,. 2, we must have mp = 0, which yields Mp=

Mp";;'p + 1. This, again, is a contradiction, and the lemma is proved.

Subsection 1: Real Poised Systems

We know that P6lya and Hermite systems are real poised, and so are systems
E where E = E I + ... +Ep and each E i is a real poised matrix. However,
contrary to the complex case, these are not all the real poised systems, as the
following example shows:
Let

1 0
E= 0 I

I 0

o 0
1 O.
o 0

Ifnis odd and XI> X3 (#X3) are any two points, letx2 = (lj2)(xl + x3). Then
the polynomial

[

X - X ]n-I
p(x) = (x - X2)n-1 - T

interpolates E at the points XI> X2 and X3' However, if n is even, then E is real
poised. To see this, suppose p(x) E 7Tn_1 interpolates E at XI, X2 and X3' where
these points are arbitrary distinct reals. Now a real polynomial ( ~O) with a
zero at XI and X3 must have a zero of odd order for its derivative in the interval
(XI>X3), However, according to E, p'(x) has only one zero and that zero has
order n - 2, which is even. Thus, it is impossible for p(x) to interpolate E,
unless p(x) == O.

The strongest result on real poised systems that we know of, is the following

THEOREM 5.2. For k > 2, suppose that the n-incidence matrix E satisfies the
P6lya conditions, andsuppose,further, that E has the property that each new zero
for p(j)(x)(j;;;,. 1), specified by E, is even. That is, if ei,j-I = 0, eij = ... =

ei.j+p-l = I and ei.j+p = 0, then p is even. Then E is (unconditionally) real
poised.

Proof. We begin by demonstrating two lemmas.

LEMMA 5.3. If p(x), not identically zero, is a real, analytic function and
pea) = pCb) =0, thenp'(x) has a zero ofodd order in the open interval (a, b).

Proof p(x) must have an extreme point in the interval (a, b), At this extreme
point,p'(x) must change sign, which implies thatp'(x) has a zero of odd order
at this point.
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LEMMA 5.4. Let E be the n-incidence matrix given in Theorem 5.2. Ifp(x), not
identically zero, is a real, analytic function and p(j)(xl) = 0 if elj = 1, where
Xl> ••• , XI< are distinct reals, then pUlex) has at least Mj - j real zerosfor 0 <J~
n - 1, ifwe count multiplicities.

Proof p(x) has at least ino = Mo - 0 zeros, counting multiplicities specified
by E. Suppose that the lemma has been shown for derivatives ofp(x) of order
less than j. Thus, pU-l)(X) has at least Mj- 1 - (j - 1) real zeros, including
multiplicities. Rolle's Theorem now tells us that pUlex) must have at least
Mj - 1 - (j - 1) - 1 real zeros and these zeros are either of odd order or they
are zeros ofpU-l)(X). However, E also specifies mj new zeros ofp(j)(x) of even
order. Thus, counting multiplicities,pU)(x) must have at least Mj - 1 - (j - 1) ­
I + inj real zeros. This gives us the fact that p(j)(x) has at least Mj - j real
zeros, and the lemma is proved.

Now, to prove the theorem, we suppose that p(x) E 1Tn-l is such that
p(j)(Xj) = 0 if elj = 1, where Xl> ... , XI< are distinct real points. By Lemma 5.4,
p(n-l)(x) has at least Mn- 1 - (n - 1) ;;;. 1 zeros. But p(n-1)(x) is a constant.
Thus, p(n-l)(x) == 0 and p(x) E 1Tn-2'

Suppose that p(x) E 1Tj, where j ~ n - 2. Then, pUl(x) is a constant which
has at least M j - j;;;. 1 zeros, i.e. pUlex) == 0, and p(x) E 1Tj_I' Since this holds
for each j, we get p(x) E 1To, namely, p(x) is a constant. But p(x) has at least
mo ;;;. 1 zeros, which shows that p(x) == 0 and proves the theorem.

Notice that Hermite systems are special cases of the systems described in
Theorem 5.2. It would be nice to say that, if E satisfies the strong Polya condi­
tions, then E is real poised if, and only if, E is a Polya system or E satisfies the
conditions of Theorem 5.2. We offer this as a conjectured characterization of
real, poised systems.

Subsection 2: Order Poised Systems

Referring to our example in the last subsection, we see that, whether n is
even or odd, if we take X2 < Xl < X3 or XI < X3< X2, then the system is pOised
with respect to these points.

The first result on order poised systems that we know of, is due to Professor
L J. Schoenberg. Also K. Atkinson, A. Sharma, and J. Prasad [2J, [7] have
worked on such systems.

In [5), Professor Schoenberg discusses quasi-Hermite systems. A matrix E
with k rows is said to be quasi-Hermite if 2 ~ i~ k - 1 and eij = 1 implyeij' = 1
for eachj' ~j,

THEOREM 5.3. [Schoenberg] If Eis a quasi-Hermite matrix which satisfies
the P61ya conditions, then E is orderpoised with respect to the ordering XI < X2 <
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.. , < Xk-l < Xk' Actually, the ordering of the interior points can be completely
arbitrary.

Proof Since E satisfies the P6lya conditions, we have Mj ;;;" j + 1, by Lemma
5.1. For the purpose of proving this theorem, let m be the number of zeros,
including multiplicities, that are specified by E at the points X2"'" Xk-l, and let
mj be the number ofzeros ofthejth derivative, including multiplicities, specified
by E at Xl and Xk, but not previously counted. Note that the number mo, as
defined here, will usually differ from the number mo ofDefinition 5.3. However,
for j > 0, the two definitions of mj agree. Also, notice that mo + m = Mo. As
an example, let

o 1 0 1 0 0
E= 1 1 0 0 0 0

10 0 0 0 O'
000 100

Then we have m = 3, mo = 0, and the number mo of Definition 5.3 is 3.

LEMMA 5.5. Under the ordering Xl < X2 < ... < Xk-l < Xk, ifp(x) interpolates
Eat Xlo ... , Xko then pUlex) has (including multiplicities) at least Mj - j real
zeros on the interval [xloxd.

Proof p(x) has m + mo = £10 - 0 real zeros on the interval [xloxd. Suppose
that we have shown that pU-1)(x) has the required number of zeros on that
interval. Then, by Rolle's Theorem, pUlex) has at least Mj- l - (j - 1) - 1
zeros, and these zeros are either in the interior of the interval or at the end­
points. But those zeros at the end-points that Rolle's Theorem guarantees
must also be zeros ofpU-1)(x). Now, E also specifies an additional mj zeros for
pUlex) at the end-points. Thus, pUlex) has at least Mj- l - (j - 1) - 1 + mj =
Mj - jzeros on the interval [XI,Xk], and the lemma is proved.

The theorem now follows in exactly the same fashion as Theorem 5.2.
Our final results on order poised systems involves those systems which we

shall call pyramid systems.

DEFINITION 5.4. Let the n-incidence matrix E have k rows. Let /;, be the
column index of the first one which appears in row i. E is called a pyramid
matrix if, for each i, eij = 1 implies eij' = 1 for /;, <;J' <;.j, and there is some
value of i (1 «; i «; k) so thatfl ;;;" f2 ;;;" ... ;;;" /;, and/;, «;/;'+1 «; ... «;h,.

As examples, the matrices

o 0 0 0 1 000
100 000 0 0
1 1 1 0 0 0 0 0
001 1 0 0 0 0
000 1 0 000
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and

I~
0 0 1 0 0 °10 1 0 0 0 0

I~
1 0 ° 0 0 01
0 0 0 0 0 01

,0 1 0 0 0 0 011

11

0 0 1 0 0 0 0:1
10 0 0 1 0 ° 0\1

are pyramid matrices, while the matrix

1 0 O[
0 1 °i
1 0 01

is not.

THEOREM 5.4. IfE is a pyramid matrix with k rows, satisfying the Polya con­
ditions, then E is poised with respect to the ordering Xl < ... < Xk'

Proof To prove this theorem, we need only establish the following lemma,
and then the prooffollows as in Theorems 5.2 and 5.3.

LEMMA 5.6. Ifp(x) interpolates E at the points Xl < '" < Xk, then p(j)(x) has
at least Mj - j zeros on the smallest interval containing the points Xi for which
ft <oj.

Proof As usual, p(x) has at least Mo - 0 zeros at the points Xi for which
ft = O. Suppose that pU-l)(x) has at least Mj - l - (j - 1) zeros on the smallest
interval containing the points Xi for whichft <oj - 1. Then pUlex) must have
at least Mj - 1 - (j - I) - I zeros on this interval by Rolle's Theorem. But,
because ofthe ordering of the x/s, none ofthe points for whichft = jlies in this
interval and, hence, pUlex) has inj zeros off the interval. This now tells us that
p(j)(x) has at least Mj -j zeros on the smallest interval containing the points
for whichft <oj, and the lemma is proved.
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