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INTRODUCTION

In this paper we generalize some results of Pdlya and Schoenberg on the
question of when polynomial interpolation schemes of the type studied by
G. D. Birkhoff yield unique solutions.

Necessary and sufficient conditions are given for the existence of nodes for
which the interpolation polynomials are unique. Then, those systems for
which unique interpolation exists for all nodes are characterized.

We conclude by showing some partial characterizations of polynomia
interpolation when the nodes are restricted to be real and then when their
order is required to remain fixed.

1. STATEMENT OF THE PROBLEM

The interpolation problem that we wish to consider in this paper was first
studied by G. D. Birkhoff [3] and can be stated as follows. Let there be given
positive integers k, n, and n-ordered pairs (7,f), where i, j are integers with
l1<i<k,0<j<n—1 Letxy, x5, ..., x; be distinct complex numbers and for
each of the above (i,7), let y;’ be a given complex number. Does there exist a
polynomial p(x) of degree less than n which satisfies, for each of these (i,})},
p¥(x;) =y, and, if so, is this polynomial unique ?

In this paper, we are only interested in the uniqueness question, and so we
can state our problem thus: If p(x) solves the interpolation problem when all
the numbers y;” are zero, is p(x) identically zero ?

In [5], L. J. Schoenberg introduced the concept of an z-incidence matrix.
A matrix E is called an n-incidence matrix if

1,... .
seenk where each¢;;isQor land > e;=n.

i=
E‘—”eij”j=0’ ven—1’ o

Thus, E has k rows and » columns, and has exactly » nonzero entries. Now our
problem can be restated as follows: given an n-incidence matrix with &k rows,

and given k distinct points x,, ..., x; and a polynomial p(x) in the class 7,_,
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of all polynomials of degree <n — 1, which satisfies p¥’(x;) =0 if ¢;; =1, is
p(x) identically zero? Whether it is identically zero or not, we say that p(x)
interpolates the matrix E at the nodes x,, ..., x;. We call n the order of the
interpolation problem.

For notational ease we make the following

DEFINITION 1.1, Two n-column matrices E and E are said to be equivalent,
if they have the same number of nonzero rows, and the nonzero rows of E are
a permutation of the nonzero rows of E.

The significance of such equivalence stems from the fact that zero rows in
an incidence matrix have no effect on the interpolation problem and, since any
ordering of the interpolating points is immaterial (except in Section 5), the
ordering of the rows of the matrix is incidental to the problem. Thus, the
matrices :

100 100 (1)(1’8
010, [Loo ad |70
100 010 NP

all define the same interpolation problem and are equivalent.
As an example of our problem, consider again the matrix

1 00
E=0 10
1 00

.

Here we are asked to find the polynomials of degree less than or equal to 2
which have zeroes at x, and x; and whose first derivatives vanish at x,. If x, is
taken to be the midpoint between x; and x;, then the polynomial p(x)=
(x — x,)(x — x3) interpolates E at the nodes x;, x, and x;. However, if x, is any
other point, the only interpolating polynomial is the zero polynomial. Thus,
the question of uniqueness sometimes depends on the choice of the nodes x;.

DEerNITION 1.2. Given an n-incidence matrix F and distinct points xy, ..., X,
E is said to be poised with respect to x,, ..., x; if the only polynomial in 7,_,
which interpolates E at these points is the zero polynomial. E is said to be
conditionally poised if there are (distinct) points x,, . .., X, with respect to which
E is poised. E is poised (or unconditionally poised) if it is poised with respect to
all choices of distinct points x;, ..., X.

In this and the following two sections, we shall characterize poised and
conditionally poised matrices.

Our first result deals with the possibility of reducing the order of a given
interpolation problem.
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Let E; and E, be, respectively, 7;- and n,-incidence matrices. If # = 1, + n,,
we define a class E; @ E, of n-incidence matrices as follows: Ec E;, @ E, if
the matrix £, consisting of the first #; columns of E and the matrix £, consisting
of the last n — n; = n, columns of E are equivalent to E; and E,, respectively.
For example, if

1 0
By o
and
1 0
Fa= ]‘0 1

then the class E; @ E, consists of the matrices

1000 .

101 0 'IOOIH { .

oo faan Rada noye

0001 0001 o010 ! !
il

and equivalent matrices.

TreoreM 1.1. Let E,, E, be, respectively, n,- and n,-incidence matrices, and
let n=mny + ny. If E € E; @ E, is poised with respect to given points xy, ..., X,
then E; and E, must both be poised with respect to the same points. Conversely,
if E, and E, are poised with respect to x,, ..., X,, then every E€c E, @ E, is
poised with respect 10 Xy, .. ., X,.

Proof. Suppose E is poised with respect to the points xy, ..., x,. Let p(x) €
71 be a polynomial which interpolates E; at the given points. Then
p(x) satisfies all the interpolation data of E up to the (r; — 1)st column. But
P™V(x) = 0 and, hence, p(x) satisfies the interpolation data of E in columns
n, ton — 1. Thus, p(x) == 0, showing that E, is poised with respect to xy, ..., X..

Now let g(x) € m,,~, be a polynomial which interpolates E, at x;, ..., x,.
Let §(x) € w, be a polynomial such that §®V(x) = g(x). Since E, is poised for
the given points, there is a unique polynomial p(x) € m,,, satisfying p*“’(x,) =
—GP(x;) for e}, =1 (E; = |le};). Now the polynomial p(x) + §(x) interpolates
Eatx,, ..., x,and, hence, is identically zero. Thus, g(x) = D"I(p(x) +§(x)) =0
and E, is poised with respect to xq, ..., X..

Conversely, suppose that E, and E, are poised with respect to the points
X1y +. s X If p(X) € m,_; is a polynomial which interpolates E at these points,
then p™9(x) € 7,,, interpolates E, at the given points. Thus, p®™’(x) = 0 and
p(x) is in m,, ;. But p(x) also interpolates E, at these points and, hence, must
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be identically zero. Therefore, E is poised with respect to the given points and
the theorem is demonstrated.

LemMA 1.1. Let

=1,..,k

be a conditionally poised matrix. Then the set of vectors X = (x,, ..., x3) for
which E is not poised is a closed, nowhere dense set in complex k-space.

Proof. E is poised with respect to given x;, ..., x; if, and only if,

)
1

where DY x denotes the jth derivative of x* at x = x;.

Now, the set of points X = (x,%5,...,%) for which P(x,, ..., x)=0 is
closed. Also, if this set contained an open sphere in complex k-space, then we
would have P(x,, x,, ..., X,) = 0, which is impossible since E is conditionally
poised. Thus, the set on which P(x;, ..., X;) is zero must be nowhere dense.

Using this lemma and Theorem 1.1, we obtain the following

- ~1
P(xq, ..., X;) =det | DD xf| Z i)’ #0,
1=

CoROLLARY 1.1. E € E; ® E, is conditionally poised if, and only if, E, and E,
are conditionally poised.

Proof. if E is conditionally poised, then by Theorem 1.1, so are E, and E,.

If E; and E, are conditionally poised, then by Lemma 1.1 we can choose
X1, ..., X, With respect to which both E; and E, are poised. Theorem 1.1 yields
then the fact that E is poised with respect to these points.

COROLLARY 1.2. E is poised if, and only if, E, and E, are poised.
We now proceed with our analysis of incidence matrices and related inter-
polation problems.

DeriNITION 1.3. Given an n-incidence matrix E, set m; = >%_, e;;, j=0,
1,...,n—1l,and M, =32 om;forp=0,...,n— L.

Notice that each m; counts the number of ones appearing in the jth column
of E and M counts the number of ones in columns 0 through j. For notational
ease, weset M_, =0. Wehave M, < M, M; +m;yy = M;, and M, =n.
We call the numbers M; Pélya constants since he was the first to study their
importance in interpolation problems of this type.

DermiTION 1.4, The incidence matrix E is said to satisfy the PSlya conditions
fM;>j+1forj=0,...,n—1.
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THEOREM 1.2. 4 necessary condition for E to be conditionally poised is that it
satisfies the Pélya conditions.

Proof. Suppose for some p we have M, < p. Let distinct points x4, ..., x; be
given. Then there is a nontrivial polynomial ji(x) € m, satisfying 5°(x;) = 0 if
e;; =1 and j < p since we have only M, < p equations and p + 1 parameters.
But p»*D(x) = 0 and, hence, p(x) trivially satisfies p(x;) =0 if ¢;; =1 and
Jj > p. Thus, the polynomial j(x) interpolates F at the given points. But there
is no restriction on the choice of the points and we see that we can construct
such an interpolating polynomial for any x;, x;, . . ., x;. Thus, Fis not condition-
ally poised and the theorem is proved.

Now let us consider what happens if equality occurs in the Pdlya conditions.
Let M,=p+ 1 for some p less than n — 1. Define incidence matrices E; and
E, by
Lk i

T i=1,.. — 120 =15°"9k
El He”\\j:O, “.,p, EZ “ei]hJ-:O, ...,71~—p-—2’

where
el = and 2 =
1= €ij n €1y = €, jip+1-

Then E, is a (p + 1)-incidence matrix, and E, is an (n — p — 1)-incidence matrix
and E € E; @ E,. Thus, the interpolation properties of the matrix E depend
solely on the interpolation properties of the matrices £, and E, as shown by
Theorem 1.1 and Corollaries 1.1 and 1.2.

DEerFINITION 1.5. E is said to satisfy the strong Pélya conditions if M; > j -+ 2
forj=0,...,n—2.

By our above remarks and Theorem 1.2, we need only consider incidence
matrices which satisfy the strong Pélya conditions, since all others either reduce
to lower order ones or are never poised.

2. POLYA SYSTEMS

We now wish to focus our attention on the case where interpolation takes
place at only two nodes x; and x,. That is, X = 2 in our incidence matrices.

There are three reasons for studying the two-point interpolation problem at
this time: Practical-—we need the results in Section 3, historical—it seems to
be the first problem of the type we are looking at that was studied, and
aesthetic—the results are particularly “nice” and complete.

Two-point systems (i.e., incidence matrices with two rows) that are poised
if x, and x, are taken to be real were characterized by G. Pélya in 1931 [4].
Pélya’s characterization was also arrived at independently by J. M. Whittaker
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in his book Interpolatory Function Theory [8]. Our result is slightly more
general, as we allow the points of interpolation to assume complex values.

THEOREM 2.1. [Pdélya 1931 and Whittaker 1935.] Let E be an n-incidence
matrix. If k = 2, then E is poised (unconditionally) if, and only if, E satisfies the
Pdélya conditions: M;>j~+1 for j=0, ..., n— 1. We call two-point systems
which satisfy the Pélya conditions Polya systems.

Proof. The necessity of the Pdlya conditions is shown by Theorem 1.2. We
now assume that E satisfies the Polya conditions. We first establish the fact
that E is poised when x,, x, are taken to be real numbers, and then we shall
extend the results to the complex plane.

LeMMA 2.1. Let E be a two-row n-incidence matrix. If x5, x, are real numbers
(x1 < x,) and p(x) is a real polynomial which interpolates E at x, and x,, then
pYNx) has at least M;—j distinct zeros on the closed interval [x,,x,] for
j=0,..,n—1.

Proof. E specifies my = M, — 0 distinct zeros for p(x) at x, and x,, so the
lemma is obviously true for j = 0. Suppose that p¥~P(x) has at least M;_, —
(j—1) distinct zeros on [x,,x,]. By Rolle’s Theorem, p“’(x) has at least
M; ,—(j—1)—1=M,; ,—j distinct zeros on the open interval (x;,x,).
But E specifies m; (=0,1 or 2) distinct zeros of p(x) at x, and x,. Hence, p(x)
has at least M;_, — j + m; = M; — j zeros on [x,, x,] and the lemma is proven
by induction.

Lemma 2.2. If E is a two-row matrix satisfying the Pélya conditions then E
is unconditionally poised whenever x, x, are real.

Proof. By Lemma 2.1, if p(x) € m,_, is a polynomial which interpolates E at
X3, X», then the constant p® U(x) has at least M,_, —(n—1)>1 zeros on
[x1,x,] Hence p™ P(x)=0 and p(x) € m,_,. Now, p™2(x) has at least
M, ,—(n—=2)>1 zeros on [x,x,] and is itself a constant. Therefore,
P (x) =0 and p(x) € m,..;. Continuing in this manner, we see that p(x)
must be a constant. But my = M, > 1 and, hence, p(x) = 0. Therefore, E is
poised with respect to x,, x,, and the lemma is demonstrated.

To prove our theorem, we let x,, x, be arbitrary points in the complex plane
(x| # x,) and suppose that p(x) € 7,—, is a polynomial which interpolates E
at x;, x,. Define q(x) = p((x; — x1) x + x;). Then g¥(0) = (x; — x,)'p(x)),
g91) = (x, — x1) pY(x,), and we see that ¢(x) interpolates E at z, =0 and
z, = 1. But now g(x) == 0 by Lemma 2.2 and, hence, p(x) = 0. Thus, E is indeed
poised, and the theorem is established.
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3. CONDITIONALLY POISED SYSTEMS

In this section, we shall characterize those systems which are conditionally
poised in terms of the Polya Constants A/

Let E be an n-incidence matrix with k& rows and suppose that E satisfies the
Polya conditions, i.e., M, >j+ 1 for each j. We shall examine the matrix E°
obtained from F by suppressing its kth row. E’ need not be an incidence matrix
because it may have less than # nonzero entries. However, we can decompose
E’ into an alternating series of incidence matrices and zero matrices as we
describe in the following paragraphs.

Suppose the kth row of E contains 7> 0 ones. Suppressing this row we
obtain a matrix

=1,..,k—1
n._-

., i
E=le

which contains n — ¢ ones. Let M;’ be Polya constants for £’ and choose a
sequence of integers

-1 <j0’ <jl’<-”<j;p <j2’p+l <n-—1 (31}
satisfying
M, =0 ifj <y’
My =j-Jj ifjo' +1<j<jy
My =j"—Jj i+ 1<j<jy
M =(j-ip)+0U" =) iR +1<j<jy

My = =i+ G ) if j + 1 <j<jy
. Y (.2)
M >~ Jap-2) + (2p-3 —J2p-4) '+ e + ;
+Us' =2+ —J) i+ 1 <j<jop
My = (jZ,P—l 'jép—z) +.o G *_‘jo,') ,
if jap1 <J <Jzp
'MJ', = (-] —jZ’p) + (jZ’p—l —-jZ’p-—Z) + L + (j]l “jo,);
)2, + 1< <Japs

J

and finally M;,,., =n—1.

In order to choose a sequence (3.1) satisfying the conditions (3.2), we
proceed as follows. If the first column of E' contains a one, we let j,’ = —1.
Otherwise we let j,” -+ 1 be the index of the first column in £’ having a one in it.
Obviously, we must have M’ =0if j <j,'. »

Having chosen jy’, we suppress columns O through j,’ of E’ to obtain a new
matrix. We let j,’ + 1 be the index in E’ of the first column of the new matrix
where the Pdlya conditions fail. Then we have M, =i —j' if jo' + 1 <j<j/".



8 FERGUSON

Note that, since this new matrix first fails to satisfy the Pdolya conditions at the
column labeled j;" 4 1 in E’, we must have m}, ., =0.

We now suppress columns 0 through j;" of E’ to obtain another new matrix.
We let j,'+ 1 be the index in E’ of the first column in the new matrix
having a one. Since mj,.,, =0, we have j," +1>j,'+1 and we also have
M) =j'—jy if ji’ + 1 <j<j,’. We continue in this fashion to construct a
sequence (3.1) satisfying (3.2) and, by our construction, we see that the sequence
is uniquely defined.

As an example, let
0110001100
E=(0 1 00 00O0O0O00O0
1001111000
Then
I 0110001100
01 000O0DO0O0O0O0

and, for the sequence (3.1), we have j,’ =0, j,"=3,j,' =5and j; = 7.

Now let ky =js, 11 — jag let E, be the matrix consisting of columns j,_, + 1
through j,' of E’ and let E, ., consist of columns j;,,, to n — 1 of E’. By our
construction, we see that E, is a zero matrix if r is even and it is a & ~incidence
matrix satisfying the Polya conditions if r =2g + 1. Finally, we write E’ =
Ey+ E; + ...+ Ejpyy. In our example, we would have

o Eolo o Bl o Bl ok Ao o

We note that ko + &y + ... k, = n — t and the total number of columns in all
the zero matrices is 7.

We are now in a position to demonstrate a theorem characterizing condition-
ally poised systems.

. o]

THEOREM 3.1. An n-incidence matrix

i=1,...k
E=lel; _o, .. n-1

is conditionally poised if, and only if, the Pélya conditions: M;>j+ 1 for
j=0,...,n—1 are satisfied.

Proof. The necessity of the Pélya conditions has been shown in Theorem 1.2.
Suppose that the Pdlya conditions hold and that the theorem has been
demonstrated for all m-incidence matrices with m < n. We must now find points
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Xy, ..., Xg 50 that E is poised with respect to them. Suppose that the kth row of
Ehas 7 ones it it. We suppress this row to obtain the matrix

, i=1,.., k-1
Er=leul; o, .. n-1
and, following our remarks preceding Theorem 3.1, we write E' = E, + ...
+ E,,.; where the even-numbered matrices are zero and the odd-numbered
ones are k,-incidence matrices satisfying the Polya conditions, the sum of the
numbers k, being n — ¢. By our inductive hypothesis and by Lemma 1.1, we
can choose distinct points x;, ..., X;—; so that each of the matrices E,,, is
poised with respect to these points.

To begin our discussion, let us pick a maximal collection of linearly indepen-
dent polynomials p,(x), . .., p,(x) which interpolate £’ at the nodes x4, ..., X;_;
so that the leading coefficient of each is one and so that their respective degrees
m, satisfy O < ny <my <...<m <n— 1. We must have r > ¢ since we have n
parameters to determine and only n — ¢ equations.

Consider now the polynomial p;(x) of degree n,. It is impossible for #; to
satisfy j,, + 1 < 1; < s,y for any g since, if it did, the (j,, -+ 1)st derivative of
pi(x) would be a nontrivial polynomial of degree less than j,,.; — j,, =k,
interpolating matrix E,,., at the nodes x;, ..., x;_; which is impossible by our
choice of x,, ..., x,_;. Therefore, the only possible values for the distinct
numbers #,, ..., 1, are the ¢ numbers m which satisfy j,,,, + 1 <m < 5., for
some ¢g. Since r > ¢, this yields = ¢, and we can set up a one-to-one correspon-
dence between the polynomials and the columns of the zero matrices in E’
by matching each such column with the polynomial having degree equal to the
index of the column in E’.

In our example, we can choose x; =0 and x, = 1 to make F, and E, poised.
Then, for our polynomials, we can choose

px)=1 of degree G =j,’
Dx)=x*—(4/3) x>  ofdegreed=j ' +1
p3(x)=x>—(5/3) x*  of degree 5=j,’
pa(x)=x%—(8/5) x°>  ofdegree 8=j;'+1

ps(x) = x* — (9/5) x° of degree 9=j,'+2=n—1.

Now, in our discussion, we see that we can choose a point x; so that E is
poised with respect to x, ..., Xy_;, X% if, and only if,

P(x) = det [pP(x)] :k=‘=1,1. !
J

is not identically equal to zero.
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LemMma 3.1, Let p(x), ..., px) be polynomials with leading coefficients one
and of exact degreesny, . . ., n,, respectively. Let 0 < j; < ... <, be given integers.
Then the polynomial

_ o i=1,...,¢
P(x)=detlpto(]  _ "
is identically zero only if
. f=1,...,¢
(is) i l > ?
det[D x]s=1,...,t

is identically zero.

Proof. P(x) is a sum of terms of the form +p{(x) pSE)(x) . .. p§P(x) where
the summation is taken over all the permutations = of the sequence 1, ..., 1. The
term of maximal degree of each summand is :=DUP x| DUD xt0_wwhich is
either zero or of degree 2! ,n; — >%_,j;. Therefore, if P(x)1is identically zero,
the sum of these terms must be zero. But their sum over all permutations of the
sequence 1, ..., zisequal to

; i=1,...,¢
det D(Js) x(m) ’ ’
I ]s=1,...,t

and this proves the lemma.

Lemma 3.2. If 0 <, <jo <...<J,<n- 1 and the numbers n; are increqs-
ing and satisfy j; <n; <n—1, then

det[D(fp) x®9] i=1,...,¢
p=1...t
is not identically zero.

Proof. Consider the two-point interpolation problem defined by

~ o i=13
E=ledly_o,. . n-1,
where x, is taken to be zero,
s _ [0 ifj=n,...m s _[1 fj=ji,... ]
1 _{1 otherwise 24 %710 otherwise

The linear system corresponding to £ consists of the n equations in n
unknowns given by DP[ay +a,x + ... + @, x* 1], _,, =0if &, = 1. Now, if
we look at the equations corresponding to &,; = 1, we see that @, =0 if &,; = 1
since x; = 0. Thus, the determinant of the linear system reduces to

1,...,¢

det] DU» xni i= .
etl x2]p=1,...,t
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Now, looking at the matrix E, we see that M, > j + 1 if j < n;, where ¥ are

the Pélya constants for E, since &9 =...= &1 =1.Buté ;,=1,j<mn
and, hence, M, >n;+1. Also, & . =...=& ,,-1=1, which yields

M;>j+1ifj<n, Buté, ;,=1andj, <n, give M,, >n, + 1. Continuing in
this manner, we easily show that #,>j+1 for j=0, ..., n— 1. Thus, by
Theorem 2.1, Eis poised; hence

. i=1,...,¢
det[ DWW xul P
[ 2 ] 921 o l
is nonzero and the lemma is proven.
Now, let us return to our matrices £ and £’. We see that, if the entries in
the kth row of E that are one are ¢e;,, ..., &, then we need only show that
n, > j, for each s. For if this holds, then, by Lemma 3.2,

det[ DUP xni =1t

p=1...,¢

is nonzero and, hence, by Lemma 3.1, P(x) is not identically zero. Then all we
need to do is pick a point x;, different from each of the points xy, ..., x;..;, for
which P(x;) # 0, and E will be poised with respect to the nodes x1, .. ., Xp1, Xz

LeMMA 3.3. If E satisfies the Pdlya conditions, then we must have an n, > j, for
=1,...,1

Proof. Let ngbe the degree of one of our polynomials and let Cy, ..., C,, be the
first n, + 1 columns of the matrix E’. We know that there is a g so that j,,., +
1 < g < jagy2- Now, the columns Cy, ..., C,, can be divided up into those that
are columns of the matrices Ey, E,, ..., E,4.2, and those that are columns of the
incidence matrices E,, E;, ..., E»; ;. From the relations (3.2), the total number
of columns of the incidence matrices E|, ..., E5,, isgivenby M, =k, +... +
k,, while the total number of columns belonging to the even-numbered matrices
iss. Hence,n,+1 =M, +s,0r, M, =(n,+1)—s.

Now M, = M, + % se.;. Thus, if E satisfies the Polya conditions, then
M,, > ns + 1 which implies that 27 ge; > 5. But thisis true if, and only if, each
of the numbers j, satisfies j, <n, for p=1, ..., 5. Thus we have j, <n, for
s =1, ..., 1, and the lemma and, hence, the theorem is proved.

4. (UNCONDITIONALLY) POISED SYSTEMS
Subsection 1: Hermite Systems

We have already seen one type of poised systems in Section 2, namely the
Polya systems, where k = 2 and the Pélya conditions are satisfied.
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We now define another class of poised systems. We say that a system Eis a
Hermite systemif E has the following property: e;; = 1 impliese;;, = 1 forj’ < j.
For example, the system
110000
111000
1 00000

is a Hermite system, as is every system describing a Newton-Lagrange inter-

polation, where ¥ =# and ey =... = ¢, =1, and every system describing a
Taylor interpolation, where k=1 and ejg=...=¢, ,.; =1. However, a
system such as

1 00

010

1 00

is not a Hermite system.,
THEOREM 4.1. If E is a Hermite system, then E is (unconditionally) poised.

Proof. Let E be a given Hermite system with &k rows, and let x,, ..., x; be
distinct points. Assume, for simplicity, that E has no zero row. Since E is
Hermite, we have e;p=... =¢; ,,_; = 1 for each i, where >%_, «; = n. But this
means that any polynomial which interpolates E at the given nodes must have
azero of order atleast o; at x;. Since D% _, ; = n,if such a polynomial has degree
less than », it must be identically zero, and the theorem is proved.

Subsection 2: Two Examples
Consider the two 5-incidence matrices given by

11000
E=|1 0 0 0 0
11000
and
10100
E=o 1 0 0 0.
11000

What we intend to do here is to give a proof that E is unconditionally poised
(although we already know that from Theorem 4.1) and that E is not un-
conditionally poised, in order to illustrate the techniques we wish to develop
in the remainder of the section.

Let ey;, and ey, be the clements in the third row of E that are one. Thus,
j1=0andj, = 1. Define sequences I; = (m,’,m;") fori = 1, 2 as follows: Let m,}
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be the column index of the first zero in the sequence e;,, . . ., €;, o1 Let m,' be the
column index of the first zero in the sequence e;,, ..., €, py if M <jp. If
my' > j,, let m,' be the column index of the first zero in the sequence e, ...,
€y, »-1- Analogously, let &, ,, and & ,, be the ones in the third column of £ and,
in the same fashion, define the sequence I; for M. Note that ¢, =0 and #, =1.

We have I, =(2,3), I,=(1,2), I, =(1,3) and I, =(0,2). Observe what
happensif we let I be any of the four sequences and if we replace the third row
of the corresponding matrix by the row defined by

o — 1 ifjerl
37710  otherwise

and then allow the new third row to “coalsece” with the row corresponding to 7
(firstrowif I= I, or I = I}, second row if I = I, or I = I,). We get

11110 11000

E“‘““1 000 OH’ E’2=H1 110 o‘,’
gt 111 ~__{101oogi
“01000 Tt 11 0 o

and all four matrices are conditionally poised.
From Section 3, we can write

,_Jt 100 0o 1t oo [0 0
E=l1 000 o~ 0 o+io o)’
~ 1 0 100 (1t o 1 Jo o
E_”O 100 0“‘0 1 ()+HO o’
and, if we choose x; = 0, x, = 1, then the six matrices: E;,, E; fori=1,2,and
110 1 0 1
100 (o109

are all poised with respect to these points. Now, we can choose p,(x) = x* — x?
and p,(x) = x* — x? as interpolating polynomials for E’ and g,(x) = (1/3)x* —
x, g2(x) = (1/4) x* — x as interpolating polynomials for £”.

Let
—det] P1IPAD ] _ a1y
Pe) det[ﬁ "(x)p2'( )] #=1)

and

7:(x)g2(x) ] 2
x) = det , x—Dx*+x—8
06 =t | =T >

Notice that P(x) has a zero of order 4 = (m,! —j;) + (m,! —j,) at x;, and a
zero of order 2 = (m;,2 —j,) + (my% — j,) at x,. Also Q(x) has a zero of order
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3 =(m,! — t;) + (m,! — t;) at x;,and a zero of order 1 = (m,> — #;) + (m,2 — 1)
at x,.

The crucial thing here is that the sequences I; and I, enable us to obtain the
exact order of a zero of the corresponding polynomial at x;, and it is this
property which we now wish to exploit in our characterization of uncondition-
ally poised systems.

Now P(x) has all of its zeros at 0 and 1. Hence, given any other point x,
P(x) #0 and E is poised with respect to 0, 1 and x. This is not quite a proof
that E is unconditionally poised, but it is enough for our purposes here. The
important thing is that Q(x) does not have all its zeros at 0 and 1. Hence,
there is a point x different from 0 and 1 for which Q(x) =0. Thus, by the
remarks in Section 3, £ is not poised with respect to the points 0, 1 and x and
this shows that £ is not unconditionally poised.

Subsection 3: The Sequences I,

Throughout this section, we assume that E is an n-incidence matrix with k&
rows and that E satisfies the Polya conditions. We assume, further, that the
kth row of E contains exactly ¢ > 0 ones, given by e,;,, ..., &,

For each i=1, ..., k — 1, define a sequence I, = (m,%, ..., m,’) as follows:
Let m,! be the column index of the first zero in the sequence €;;,, ..., €; ;-
Assuming that m,’, ..., m}_; have all been defined, where p<t, let a=
max(j,,m._, + 1) and let m,’ be the column index for the first zero in the
SCQUENCE €5,qs « -« o5 €5, p—1-

Before showing the existence of such a sequence for each i, let us prove the
following

LemMA 4.1. If the sequence I, exists, then if satisfies:
Dosmi<mi<..<ml<n~—1;
(ii) Foreachq,j,<m, ande; m; =0;
(ii) If the sequence ey;,, ..., €;,m, cOntains q zeros, then these q zeroes are
GiVEN BY €; mi,_gi1s €1, mip-gizs + > €0, mip:

Proof. Conditions (i) and (ii) easily follow from the definition of the sequence
I;. To show that (iii) holds, we observe that if p = 1, then, by the definition of
I, the sequence e;;,, ..., €;, m,; cOntains exactly ¢ = 1 zeros given by ¢; ,,,, =0,
and (iii) holds.

Suppose that we have shown (jii) to hold for m,’, ..., m._,, and suppose that
the sequence e;;,, ..., €; m, contains g > 1 zeros. If g = 1, then (iii) trivially,
holds. If g > 1, let e;; be the last zero in the sequence before e; .. If j % mj_,,
then j > max(j,,m}_, + 1) and, by definition, j > m,?, which is a contradiction.
Therefore, j=m;_;. Now, the sequence e;;, ,, ..., €, mi,.; contains g —1 or
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more zeros. But, by the induction hypothesis, the last g — I zeros are given by
€, mipgu1> - - > €1, mi,_» ad this shows that (iii) holds for p and, hence, thelemma
is proved.

LemMa 4.2, Foreachi=1,...,k — 1, the sequence I, exists.

Proof. If m;" did not exist, then we would have ¢;;, =...=¢; ,, = 1. But
M; i >j; and, since e,;, =1, we must have M,_; =>ji +1+m—j)=n+1
because of all the ones in the ith row. But this is impossible, so we must be
able to construct m .

Ifm,?, ..., m._, haveall been constructed forp < t,andif ¢; , = ... = ¢; ,.; =
1, where « = max(j,,m._, + 1), let ¢ be the last integer satisfying m,’ <j,.; (if
no such integer exists, take g = 0). Then, in the sequence e;;,, ., ..., €, ,—1, there
are exactly p — (g + 1) zeros, given by e;, i, - - -» €, m,_, and, hence, there are
1 — jgu1 — P + (g + 1) onesinthe sequence. Also, we havee, ;,,, =... = ¢, = 1.
Thus, since M,,,_; > jg1, We have My >jg1 +0—jo —p+ @+ 1D+ ¢~
g=n-+t—p+1=n+1, which is absurd. Thus, we must be able to define
m,' and the lemma is proved.

Now let S={(sy, ..., §) be an increasing sequence of integers satisfying
Ja<sgforeachg=1,...,t. Fixanithrow (I <i<k — 1)in E, and define a new
matrix Eg by replacing the kth row of E with a row k defined by

r = 1 ifjes
10 otherwise

and then allowing the new &th row to coalesce onto the ith row of E.

LeMMA 4.3. E;, is an n-incidence matrix satisfying the Pdlya conditions while,
in general, Eg is an n-incidence matrix only if S satisfies s, > m;' for each
g=1,...,1t

Proof. Let M, denote the PSlya constants for E;, and let I; = (m,, ..., m,). We
certainly have M, = M;>j+ 1if j<j—1. Now e;;, = ... =€ py—y =1 and
this gives M; >j+ 1if j <m, — 1. But in Ey,, ey, = 1, yielding M,,, > m; + 1.

Suppose now that we have shown M;>j+1 for j<m,_;, where p<1.
Ifm,_y > j,, then, by definition of the sequence I;, wehave e, , = ... = €, = 1
inthe matrix Ey,, and this gives M, > j + 1forj <m,. If m,_; < j, then M, _, =
M,,.,—(p—1+(p—1)=M,,,, since the (p — 1) ones in the kth row of E
that are not counted by the number ﬂ,,,p_l are compensated for by the fact

that €, =...=@€;m,, =1 in Ey. Thus, we have M,=M,;>j+1 for
j=m,_y, ..., j,— 1. Now, the fact that in Ey,, e;;, = ... = €, = 1 gives M, >

j+1forj<m,.
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By induction then, M,>j+1 for j<m, But M,, = M,,. which yields
M;>j+1forj=1,...,n—1, and the first part of the lemma is proved.

Now consider the matrix Eg and suppose that it is an »-incidence matrix.
If 5, < my, then, using the definition of m,, we have e;;, = e, = 1 and, hence,
Eg would have fewer than n entries. Thus, 5 > m;.

Suppose now that we have shown s,>m, forg=1,...,p=1where p<t.
If s, < m,, then m,_; <s, <m,. But, if m,_; =s,, we have 5, = m,_; =5,
which is impossible under the assumption that S is an increasing sequence.
Now, for m,_; < s, < m,, €;;, = €;5, = 1 and Eg has fewer than n entries. Thus,
if Eg is to be an n-incidence matrix, we must have s, > m, for each ¢, and the
lemma is proved.

Subsection 4: The Polynomial P(x)

As in Subsection 3, E is to be an n-incidence matrix satisfying the Pdlya
conditions. E is assumed to have £ rows and the kth row has ¢ ones in it given
by ey, - €xj,- We let E’ be the matrix obtained from E by suppressing its
kth row, just as we did in Section 3, and we write E' = Eq + E; + ...+ Ey 1y +
E,, 1, Where the even-numbered matrices are zero matrices, the odd-numbered
ones E,,,; are k,incidence matrices satisfying the Polya conditions, and

P okg=n—1t

LetI, I, ..., I_; be thesequencesfor E that were discussed in the last section
and choose points x,, ..., X;—; 5o that the matrices E,,,, forg=0, ..., p, and
E;fori=1,..., k—1 are poised with respect to these points. Construct the
interpolating polynomials p,(x), ..., p,(x) as in Section 3, where the degrees of
the polynomials are increasing and the leading coefficient of eachis 1.

Let R(x) represent the vector [p,(x), . .., p(x)]. Define the polynomial P (x) by

P(x) = det [RYD(x), ..., RU(x)].

We now wish to investigate this polynomial which determines whether or not
there is a point x; so that E is not poised with respect to x;, ..., X;_1, X
We need the following algebraic lemma:

LeMMa 4.4,
P(r)(x) = z det [R(.I'H—l'l)(x)’ cens R(‘i'+")(X)],

where the sum is taken over all sequences ry, ... r, of nonnegative integers satisfy-
ing Dt yro=randj+r <j+r,<..<j +r,.

Proof.

P¥) =3 det[RYUD(), ..., RUFD(x), ... RUI)].
g=1



G. D. BIRKHOFF INTERPOLATION PROBLEMS 17

We can delete from this sum those determinants in which j, + 1 =j,,, since

such a determinant has two identical rows and, hence, is zero. Thus, we can
write

P’(x) = z det [R(.h+r)(x), ey R(ft+rt(x)]’

where the sum is taken over all sequences 7y, ..., , of nonnegative integers
satisfying 3! ;ro=1andj, +r <jp+r<...<j +r.
Suppose the lemma has been demonstrated for P~ D(x). Then

P(r)(x) — Dx{z det [R(jx-}-n)(x)’ e R(j'+”)(x)]}

where the summation is over all sequences which add up to » — 1 and for which
Ji+r<...<j.+r. Wehave

t
P®(x) =z { 2 det[RYUTrD(y), ..., RUetraD(x) RUHI(x)]1 5
gq=1

since we can again delete all the terms in which, for someq, j,—; +7,_; + 1 =J,,
and since >)_; r,+ 1 =r, we have

PO(x) =3 det [RU+D(x), ..., R (x)],

where the summation is taken over all sequences of nonnegative integers which
sumto rand for whichj, +r, < ... <j, + r,. Thelemma is, thus, demonstrated.
Now let the sequence I; be given by 7, =(m,,....,m) and let m=

>t_1 (my —Jj,). The following important lemma tells us about the zero of P(x)
at the point x;.

LeMMA 4.5. P(x) has a zero of exact order m at the point x;.

Proof. Suppose r <m. Consider the sequence R=(j; +ry,....J, +F) in
Lemma 4.4. The summand corresponding to this sequence is exactly the
polynomial one would get by looking at the matrix obtained from E by
replacing its kth row by the row

or 1 ifjeR
710 otherwise.
But then, allowing x = x;, means that we are locking at the polynomial we
would get by letting row & and row i coalesce, i.e., we are looking at the linear
system corresponding to the matrix Eg as in Lemma 4.3.

Now, the condition that >}_; r, = r < m means that for some g we must have
Jq + 75 < my. Using Lemma 4.3, this means that E is not an n-incidence matrix
(in fact, E; has fewer than » entries) and, therefore, can be interpolated by a
nontrivial polynomial of degree less than n. But this implies that the linear

system corresponding to it must be identically zero and, hence, the appropriate
2
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term P ®(x,) is zero. Now, this analysis holds for each term in the makeup of
P®(x,) and, hence, P (x,) =0.

For the same reason, each term in the expression for P™(x;) is zero, except
for the one where each j, + r, = m,. This sequence is /;, and the corresponding
term is the polynomial for the matrix E;, at the points x;,...,x;;. By our
selection of these points, this matrix is poised with respect to them, and the
term cannot be zero. Hence, P ™(x;) # 0, and the lemma is proved.

Subsection 5: Estimating the Zeros of P(x)

In this subsection, we assume that E is an #-incidence matrix with k rows and
satisfying the strong Polya conditions: M; > j+ 2forj=0,...,n — 2(Def. 1.4).

Again, let the kth row of E contain ¢ ones, let their column indices be
Jis »--»J: and let E’ be the matrix obtained from F by deleting its kth row. We
write E' = Ey + E) + ... + E,,,, + E,,,, as before. Choose points x;, ..., X;_;
so that the matrices E,,, and E;, are all poised with respect to them, and form
the polynomials p,(x), ..., px) of increasing degrees n, < ... <n,, where the
numbers n; correspond to the column indices in E’ of the columns of the
matrices E,;. Also, form the polynomial P(x) as in the last section. We note
that M, = m, > 2 and, hence, j,' = —1 (see the beginning of Section 3)and the
matrix E, is empty. Thus, wehave E' =E, + ... + E;,.,.

We shall now prove a series of lemmas that will allow us to estimate the size
of the numbers >%-1 (m; —j,p).

LeMMA 4.6. We must have j; < n, and, forq > 1,j, <n,_;.

Proof. Since E satisfies the Pélya conditions, Lemma 3.3 yields j, < n, for
each g. However, if j, =#n,, we have M,,,_, = M, _, =n,, which contradicts
the assumption M,,_; > n; + 1. Hence, j; <n,.

Consider the polynomial py(x) of degree n,. We know (Section 3) thereisa g
so that j5 . + 1 <1y <jy.42. Now, from the relations (3.2), we have M, =
M, + >, e;and M, = (m,+ 1) — 5. Suppose that we have shownj, < ny,.. .,
js<ns., where s <¢. Then we have n, +2< M, = (n,+ 1)~ s+ D" g e If
Jsi1 > B, then 3% o e, =5 and we have n, + 2 < n, + 1, which is impossible.
Thus, j;4; < 1, and the lemma is proved.

LeMMA 4.7. For each g and i, m} < n,.

Proof. We have j, <n; and e, =0. Hence, we must have m,' <n, for
each i. Suppose we have shown m!_; <n,, for each i. For any i, let & =
max (j,mi_; +1). Since ji<n,y, miy +1<n, +1<n, and ¢;,, =0, we
have « < ng and, thus, m < n, for each i. This proves the lemma.
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LemMA 4.8. Suppose a is a positive integer so that m}_,_, < j, — a, and suppose
m} > js for some q satisfying s —a<q<s— 1. Then the sequence €, ; g, ...,
€;, j—1 Must contain at least (s — q) ones.

Proof. If the sequence in question contains fewer than (s — g} ones, then it
contains at least b=a—(s—g—1) zeros gwen BY €reis «ros €iop NOW
Jsa<ls—a<e r:1= ms—a—-l < @,e and hence, m Mgy < < €i,ey alsojy gy <js—a+
I<e;,, yields mi_,,; < € cpe Continuing in this manner, we get ji_sip_; =
Ja< e, and, hence, m,' <e; ., <Jjs— 1, which is contrary to our assumption.
Thus, the lemmais proved.

Now let p, be the number of columns in the matrix E,, and let p; = 0. We
have the following relationship:

Hpgipit. .. 4pr1e T 06— 1= Hpot ... +opr

LemMA 4.9. Suppose column j, of E' lies in the matrix Eyyyy + Ejyys. Let
o, =(§— 1) — po — ... — p, for each r. Then, either for some r{0 < ¥ < q), column
Js — o lies in the matrix E,, ., ; or, if this fails for each r, column j, — «, lies in
E2q+2'

Proof Ifjs~ oty > Hpgipie. . . +p,+1» thencolumn j; — e, liesin E, ., and we are
finished. Suppose now that j; — oty <oy .. 4p,+1- Let r be the smallest integer
so that j,— o, <mpey.. . +pe1. If =0, we have j,— (s — 1) <n, and, hence,
columnj,—(s— Disin E;. Ifr >0, wehaveny,y | 1y 01 <Js— &y <ji— 05
since r is minimal. Adding p, to both sides, we get #yy ... ipyo1 T2 <Js—
Ot + Pr=Js— cp. But B, ... 4p,.,+1 18 the column index of the first column
of E, and, since E,. has exactly p. columns, ... 4,41 + Pr iS the
column index of the first column of E,,.;. This now gives us the fact that
column j; — e, isin E,, ,, and the lemma is proved.

We are now ready to establish our estimates for the numbers 2%} (m, — j,).

THEOREM 4.2. If E satisfies the strong Pélya conditions, then we have

k-1 . Y nl'—jl'—'l l:fjl>0
m’—jp< , o
1;( v {”1 = ifj; =0

and, for
k-1 ]
A izl (msi ~.]s) < Hg

Proof. The number (,* — j;) counts the number of consecutive ones in row i
starting with column j;. Now this cannot exceed the number of ones in row #
between columns j; and #n,, since m,' < n,;. This means that >%} (m,* —j,) is
no larger than the number of ones in the matrix E, between columns j; and #,.
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Now, if j; =0, this number is n, =n, —j,. If j;, >0, then we observe that
M, = M; for j < j; — 1, since ¢,; = 0 for j < j; — 1. But this means that, in the
first j; columns of E,, there are at least M, _; >j; + 1 ones and, hence, the
number of ones from the j;st column to the #n;st column is no more than
n— (j+ 1). Therefore, the first statement of the theorem is proved.

Suppose that column j; lies in the matrix E,;,; + E,g.2, and thats > 1. From
Lemma 4.9, there are two cases. To begin with, let us assume that column
Js— og lies in the matrix E,,,,. Then the sequence e;, ;o «--y €1, =15 @i
contains nothing but zeros. Lemma 4.7 gives m,_, 1 = Mpoy .. 4p, <Mpos.. .+
< js— o, Thus, Lemma 4.8 tells us that m!_, <j;—1 and, hence, mg =j.
Therefore, >¥=1 (mg — jo) =0 < ny— j.

The remaining case is that for which there is an 7 so that column j, — «, lies
in the matrix Ej..;. Then my o1 = Mpps .. 4p, <Ppos... 10, <Js — 0. NOW
(mg — j,) counts at most the number of ones in row i between columns j, to ng.
Plus, it counts one for each m,! that is larger than j; — 1, where p < s — 1. But
the conditions of Lemma 4.8 are met for @ = «,, and this means that each m,*
thatis larger than j; — 1 is compensated for by a one in the sequence e; ;.5 .. s
ey, j,—1. Thus, (ms" — j;) counts at most the number of ones in the ith row from
column j; — «, to column n,. Hence, %} (m,* — j) counts at most the number
of ones in the matrix E’ from column j; — e, to column n,. This number is
M, — M; _,,,. From the relations (3.2), we have M, =n,— s+ 1. Also, we
note that, if there was a one in each of the columns ny, ..., 1,4 ... 4p,, E' Would
satisfy the Pélya conditions down to the last column of E,,.;. Thus, M}, >
js 04— P es ™ P We now have ’:‘:} (msi _js) < Mr:s - MJ"s—ar—l <n—s-+
1—js+o.+po+...+p=n,—Js, and the theorem is proved.

Subsection 6: A Characterization of Poised Systems

We are now ready to prove our major theorem on (unconditionally) poised
systems.

THEOREM 4.3. If E satsifies the strong Pélya conditions, then E is uncondition-
ally poised if, and only if, E is a Pélya system or a Hermite system.

Proof. The sufficiency has already been demonstrated in Theorems 2.1 and
4.1. Suppose that E satisfies the strong Pdlya conditions and that it is uncon-
ditionally poised. Then it is necessary that the polynomial P(x) have no more
zeros than those it has at the points x, ..., x,_;. Now P(x) has degree equal
to Di_; ng— 24y Ja At the point x;, P(x) has a zero of order >%_, (m,' —j,).
Hence, we must have

k

!

1t t t
Z (mqi —jq)= 2 n,— qu
i=1 g=1 q=1 a=1

i
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or

7 Mn

k- t t
Z _'jq)= Z n, — thr
i=1 a=1 a=1
Using Theorem 4.2, we get

t 3 3 1 . nl _jl
Z Big — qzl Ja < 22 (nq —Jq) + .
= a=

ny—

0 -1 ifj; >0

{ 0 ifj,=0"
Thus, in order that E be poised, it is necessary that j, =0 and that equality
hold in each of the estimates of Theorem 4.2. Since we must have >*! m* = n,,
E; must be a Hermite matrix.

Suppose E; has the only one nontrivial row. Then E must be a Pélya matrix.
To see this, suppose that the nontrivial row is the first and that £, has a one in
the second row. The columns of the matrix E, have indices #ny, ..., n,,. Now
Joi+1 < 7, yields the fact that the column j,,,; — p, is in the matrix E;. Also,
to be maximal, (m2,;, — j,,,1) must count the one in the second row of E;.
But e,; =0 for j<n,, immediately gives m2,,; =j,,+; and, hence, (m?2 ,; —
Jpy+1) = 0. Thus, if E; has a nontrivial row other than the first, 2%} (m}, ,; —
Jer+1) is not maximal, and F is not poised.

Now assume that we have shown that E;, ..., E,,_; have only one nontrivial
row and that that row is the first in each of the matrices. If the second row of
E,q+1 has a one it it, then we must have (2,4 .. 4p,41 —Jpi+. .. 4pe+1) > 1. But
again m, =j, for r <ny,. . 4p, and, SINCE Jp,1 ... 4pgt1 <Fpit. .. 4p, WE have
(12,4 .. +og41 —Jor+...+pg+1) = 0 < 1. Thus, by induction, each E,,,, can have
only one nontrivial row, and that row must be the same as the nontrivial row
of E,. Therefore, E has only two nontrivial rows and, hence, is a Pdlya matrix.

Now, if E, has more than one nontrivial row, £ must be a Hermite matrix.
To establish this, we first show that E’ = E; + E,. If there were another matrix,
E,, with a nontrivial row (say the first), then (m3,.; —j,,+1) > 1. But the
SEqUENCE e »,_1, ..., €1, ,, CONSISts entirely of zeros (if e, ,,.; = 1, then the fact
that E, is Hermite 1mphes that E can only have one nontrivial row) and, hence,
m} . = Jp,+1. This is impossible since (2}, ,; — jp,+1) must count the one in the
first row of E;. Therefore, we musthave E' = E, -+ E,.

To show that E is Hermite, we now only need to show that j,=s—1 for
s=1, ..., &. We already know that j, = 0. Since £’ = E| + E,, we know that
column Js — (s — 1) must be in E. Also, we need the relation D%} (m! —j,) =

—jo But ¥ 1(m — j;) counts at most the number of ones in &, from the
(]s — s+ Dstcolumn on. Ifj; > s, thisnumberisatmostr, — (i — (s — 1)+ 1) =
4+ (s—1D~j,—1=n,—j,—1. Hence, we must have j,<s. This gives
Js=s5— 1, which shows that E is a Hermite system and completes the proof of
the theorem.
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To illustrate this theorem, let us return to the two examples of Subsection 2.
Both matrices satisfy the strong Polya conditions. The first matrix was a
Hermite systemand so must be unconditionally poised. The second matrix repre-
sents neither a Hermite nor a Pdlya system and, hence, cannot be uncondition-
ally poised. As a matter of fact, if we choose x; = 0 and x, = 1, then as we have
shown in Subsection 2 of the present section the polynomial P(x) associated
with this matrix is given by P(x) = x3/12(x — 1)(x? + x — 8). Now, we can
choose x; to be either of the values (—1 & 4/33)/2, so that P(x;) =0 and the
system is not poised with respect to the given points. As a matter of fact, the
polynomial p(x) = q,(x3)q,(x) — q,(x3)¢g>(x) is a nontrivial polynomial of
degree 4 < 5 which interpolates the system at the given points.

5. REAL SYSTEMS

Introduction

In Sections 3 and 4, we have characterized poised and conditionally poised
interpolation systems under the assumption that the interpolation takes place
in the complex plane. We now wish to analyze these systems when we restrict
the interpolation to points on the real line.

DEFINITION 5.1. An #-incidence matrix is said to be conditionally real poised
if there are real points x;, ..., x; so that E is poised with respect to them. E is
said to be (unconditionally) real poised if it is poised with respect to every
collection of real points xy, ..., X;.

The technique for proving theorems in this chapter will be that of counting
the zeros of a possible interpolating polynomial as was done in proving that
Pdlya systems were poised (Theorem 2.1). The device that we shall use for this
is Rolle’s Theorem. We should point out here that all the polynomials that we
shall consider will be assumed to be real. This is no loss of generality since, if we
caninterpolate a system with a nontrivial polynomial when the points are taken
to be real, then the linear system for a real polynomial also has a nontrivial
solution. Rolle’s Theorem tells us a little more than the minimal number of
zeros that the derivatives of a given polynomial must have. It also restricts
their location (i.e., they must interlace with the zeros of the next lower deriva-
tive) and, for this reason, we are able to show that some systems are poised
provided only that we keep the ordering of the nodes fixed. Consequently, we
make the following

DEFINITION 5.2. E is said to be order poised with respect to the ordering
Xy <...<x if it is poised with respect to all possible choices of the points
X15 .+, Xz under this ordering.
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If, in the proof of Theorem 3.1, we assume that ail the incidence matrices
are conditionally real poised, we easily obtain

THEOREM 5.1. E is conditionally real poised if, and only if, it satisfies the Pélya
conditions: M; >j+ 1forj=0,...,n—1.
For our discussion, we need the following

DermNiTION 5.3. Let E be a given n-incidence matrix and let p(x) be an inter-
polating polynomial for a given set of points. Let 77, be the number of zeros of
p(x), inctuding multiplicities, that are specified by E. In general, let #; be the
number of zeros of pY(x), including multiplicities, that are specified by E but

that are not counted by any of the numbers 7, ..., #,_,. Let #_, =0, and
Mf = Z;ﬂ Hiype
For the matrix
‘Jl 0 OJ‘
Eo 1 0,
o o 1]
we get 771, = m; = 1 for each j while, for the matrix
[t 1.0 0 0f
];0 110 0,
1000 0

we have
My=2, Hy=23
my=2, M;=2
my=1, #=0.

The following two lemmas relate the quantities M, and M.
LEMMA 5.1. For a given j, M;>j + 1 if, and only if, M, > j + 1.

Proof. Obviously, we must have & ;> M for each f and, thus, we need only
prove the lemma in one direction. Suppose that M, > j -+ 1 for each j and that
for some p we have M, < p. Then, for some j < p, we must have m, =0 and,
hence, M; = M. Let j be the largest integer less than or equal to p such that
m;=0. Then M, <p implies M;<j and, hence, M;= M, <j, which is a
contradiction. Thus, the lemma holds.

LEMMA 5.2. M; >+ 2 if, and only if, M, > j + 2 and mg > 2.

Proof. Again, the proof in one direction is clear. Suppose now that M, > j + 2
for each j, and that my > 2. If there is a p > 1 such that M, < p + 1, choose the
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smallest such p. Then, since 1y > 2, we must have m, =0, which yields #7,~=
M, <p+ 1. This, again, is a contradiction, and the lemma is proved.

Subsection 1: Real Poised Systems

We know that Polya and Hermite systems are real poised, and so are systems
E where E=E; +...+ E, and each E; is a real poised matrix. However,
contrary to the complex case, these are not all the real poised systems, as the
following example shows:

Let
10 ... 00
E=j0 1 ... 1 O
1 0 ... 00

If nis odd and x,, x; (54 x3) are any two points, let x, = (1/2)(x; + x;). Then
the polynomial

p) = (x—x)" ! — [)ﬁ_}—:z-_x_l]n—l

interpolates E at the points x;, x, and x;. However, if » is even, then FE is real
poised. To see this, suppose p(x) € m,_, interpolates E at x,, x, and x;, where
these points are arbitrary distinct reals. Now a real polynomial (30) with a
zero at x; and x, must have a zero of odd order for its derivative in the interval
(x,x5). However, according to E, p’(x) has only one zero and that zero has
order n~— 2, which is even. Thus, it is impossible for p(x) to interpolate E,
unless p(x) = 0.

The strongest result on real poised systems that we know of,, is the following

THEOREM 5.2. For k > 2, suppose that the n-incidence matrix E satisfies the
Pélya conditions, and suppose, further, that E has the property that each new zero
for pP(x)(j=1), specified by E, is even. That is, if e; ;, =0, e;;=...=
e jrp—1=1 and e; ;,,=0, then p is even. Then E is (unconditionally) real
poised.

Proof. We begin by demonstrating two lemmas.

LemMa 5.3. If p(x), not identically zero, is a real, analytic function and
pla) = p(b) =0, then p'(x) has a zero of odd order in the open interval (a,b).

Proof. p(x) must have an extreme point in the interval (a, b). At this extreme
point, p'(x) must change sign, which implies that p’(x) has a zero of odd order
at this point.
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LEMMA 5.4. Let E be the n-incidence mairix given in Theorem 5.2. If p(x), not
identically zero, is a real, analytic function and p¥(x) =0 if e;; =1, where
X1, ..., X are distinct reals, then p(x) has at least M, — j real zeros for 0 <j <
n— 1, if we count multiplicities.

Proof. p(x) has at least 1 = M, — 0 zeros, counting multiplicities specified
by E. Suppose that the lemma has been shown for derivatives of p(x) of order
less than j. Thus, p¥~(x) has at least M;_, —(j— 1) real zeros, including
multiplicities. Rolle’s Theorem now tells us that p“’(x) must have at least
M,_; — (j— 1) — 1 real zeros and these zeros are either of odd order or they
are zeros of pY~D(x). However, E also specifies /71, new zeros of pP(x) of even
order. Thus, counting multiplicities, p*’(x) must have at least M,_, — (j — 1) —
1 471, real zeros. This gives us the fact that p’(x) has at least #; — j real
zeros, and the lemma is proved.

Now, to prove the theorem, we suppose that p(x) € m,_, is such that
p9P(x;) =0if e;; = 1, where xy, ..., x, are distinct real points. By Lemma 5.4,
P D(x) has at least M,_; —(n—1)>1 zeros. But p™"(x) is a constant.
Thus, p® V(x) =0 and p(x) € 7,_,.

Suppose that p(x) € m;, where j < n— 2. Then, p*’(x) is a constant which
has at least M, — j > 1 zeros, i.e. p"’(x) =0, and p(x) € 7;_,. Since this holds
for each j, we get p(x) € my, namely, p(x) is a constant. But p(x) has at least
myg > 1 zeros, which shows that p(x) =0 and proves the theorem.

Notice that Hermite systems are special cases of the systems described in
Theorem 5.2. It would be nice to say that, if E satisfies the strong Pélya condi-
tions, then E is real poised if, and only if, E is a Pdlya system or E satisfies the
conditions of Theorem 5.2. We offer this as a conjectured characterization of
real, poised systems.

Subsection 2: Order Poised Systems

Referring to our example in the last subsection, we see that, whether # is
even or odd, if we take x,; < X; < X3 Or X; < X3<< X;, then the system is poised
with respect to these points.

The first result on order poised systems that we know of, is due to Professor
1. J. Schoenberg. Also K. Atkinson, A. Sharma, and J. Prasad [2], [7] have
worked on such systems.

In [5], Professor Schoenberg discusses quasi-Hermite systems. A matrix E
with k rows is said to be quasi-Hermiteif 2 < i<k — 1l ande;;= 1 implye,;;, =1
foreachj’ <j,

THEOREM 5.3. [Schoenberg] If E-is a quasi-Hermite matiix which satisfies
the Polya conditions, then E is order poised with respect to the ordering x; < x, <
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oo < Xy < Xy Actually, the ordering of the interior points can be completely
arbitrary.

Proof. Since E satisfies the Pélya conditions, we have M; > j -+ 1, by Lemma
5.1. For the purpose of proving this theorem, let m be the number of zeros,
including multiplicities, that are specified by F at the points x,, ..., x;_;, and let
#1; be the number of zeros of the jth derivative, including multiplicities, specified
by E at x; and x,, but not previously counted. Note that the number 71, as
defined here, will usually differ from the number #, of Definition 5.3. However,
for j > 0, the two definitions of A1, agree. Also, notice that 71y +m = M. As
an example, let

010100

110000
E"100000'

000100

Then we have m = 3, i1y = 0, and the number 7%, of Definition 5.3 is 3.

LEMMA 5.5. Under the ordering x| < X, < ... < Xy_y < X, if p(x) interpolates
E at Xy, ..., X, then p9(x) has (including multiplicities) at least M, — j real
zeros on the interval [x,%,].

Proof. p(x) has m + #iy = M, — 0 real zeros on the interval [x,, x,]. Suppose
that we have shown that p“~1(x) has the required number of zeros on that
interval. Then, by Rolle’s Theorem, p“’(x) has at least M,_, —(j—1)—1
zeros, and these zeros are either in the interior of the interval or at the end-
points. But those zeros at the end-points that Rolle’s Theorem guarantees
must also be zeros of p¥~1(x). Now, E also specifies an additional 7, zeros for
pY(x) at the end-points. Thus, p’(x) has at least M,_; — (j—1) — 1 + #it; =
M ; — jzeros on the interval [x,,x,], and the lemma is proved.

The theorem now follows in exactly the same fashion as Theorem 5.2.

Our final results on order poised systems involves those systems which we
shall call pyramid systems.

DEFINITION 5.4. Let the n-incidence matrix E have k rows. Let f; be the
column index of the first one which appears in row i. E is called a pyramid
matrix if, for each i, e;; = 1 implies e;;, = 1 for f; <j’ < j, and there is some
valueof i (1 <i<k)sothatfi=fox...=fiand fi<fip <. .. <fir

As examples, the matrices

00001 000
1 0000O0O0O
11100000
00110000
0 001 0O0O0TO0
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and
000100 o}
001000 0
0100000
!1 000000
o100 00 o“
to 010000
o 00100 o
are pyramid matrices, while the matrix
1 0 0|
01 0
1 0 0

is not.

THEOREM 5.4. If E is a pyramid matrix with k rows, satisfying the Pélya con-
ditions, then E is poised with respect to the ordering x, < ... < x.

Proof. To prove this theorem, we need only establish the following lemma,
and then the proof follows as in Theorems 5.2 and 5.3.

LemMa 5.6. If p(x) interpolates E at the points x; < ... < x, then p9(x) has
at least M; — j zeros on the smallest interval containing the points x, for which

Si<J

Proof. As usual, p(x) has at least M, — O zeros at the points x; for which
f; =0. Suppose that p¥~D(x) has at least M;_, — (j — 1) zeros on the smallest
interval containing the points x; for which f; <j— 1. Then p“’{x) must have
at least M, , —(j—1)— 1 zeros on this interval by Rolle’s Theorem. But,
because of the ordering of the x,’s, none of the points for which f; = jlies in this
interval and, hence, p"(x) has #1; zeros off the interval. This now tells us that
PP(x) has at least M; — j zeros on the smallest interval containing the points
for which f; < J, and the lemma is proved.
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